• Title/Summary/Keyword: Deadlock-free

Search Result 29, Processing Time 0.026 seconds

Optimization of Job-Shop Schedule Considering Deadlock Avoidance (교착 회피를 고려한 Job-Shop 일정의 최적화)

  • Jeong, Dong-Jun;Lee, Du-Yong;Im, Seong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2131-2142
    • /
    • 2000
  • As recent production facilities are usually operated with unmanned material-handling system, the development of an efficient schedule with deadlock avoidance becomes a critical problem. Related researches on deadlock avoidance usually focus on real-time control of manufacturing system using deadlock avoidance policy. But little off-line optimization of deadlock-free schedule has been reported. This paper presents an optimization method for deadlock-free scheduling for Job-Shop system with no buffer. The deadlock-free schedule is acquired by the procedure that generates candidate lists of waiting operations, and applies a deadlock avoidance policy. To verify the proposed approach, simulation resultsare presented for minimizing makespan in three problem types. According to the simulation results the effect of each deadlock avoidance policy is dependent on the type of problem. When the proposed LOEM (Last Operation Exclusion Method) is employed, computing time for optimization as well as makespan is reduced.

Synthesis of Deadlock-Free Ladder Diagrams for PLCs Based on Deadlock Detection and.Recovery (DDR) Algorithm (DDR 알고리즘에 기반한 교착상태배제 래더 다이어그램 설계)

  • Cha, Jong-Ho;Cho, Kwang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.8
    • /
    • pp.706-712
    • /
    • 2002
  • In general, a deadlock in flexible manufacturing systems (FMSs) is caused by a resource limitation and the diversity of routings. However, the deadlock of industrial controllers such as programmable logic controllers (PLCs) can occur from different causes compared with those in general FMSs. The deadlock of PLCs is usually caused by an error signal between PLCs and manufacturing systems. In this paper, we propose a deadlock detection and recovery (DDR) algorithm to resolve the deadlock problem of PLCs at design stage. This paper employs the MAPN (modified automation Petri net), MTPL (modified token passing logic), and ECC (efficient code conversion) algorithm to model manufacturing systems and to convert a Petri net model into a desired LD (ladder diagram). Finally, an example of manufacturing systems is provided to illustrate the proposed DDR algorithm.

Deadlock Analysis and Control of FMS's Using Siphon property (Siphon 특성을 이용한 FMS의 Deadlock 해석과 제어)

  • Kim, Jung-Chul;Kim, Jin-Kwon;Hwang, Hyung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.677-682
    • /
    • 2007
  • Concurrent competition for finite resources by multiple parts in flexible manufacturing systems(FMS's) and inappropriate initial marking or net structure of Petri net with share resources results in deadlock. This is an important issue to be addressed in the operation of the systems. Deadlock is a system state so that some working processes can never be finished. Deadlock situation is due to a wrong resource allocation policy. In fact, behind a deadlock problem there is a circular wait situation for a set of resources. Deadlock can disable an entire system and make automated operation impossible. Particularly, an unmanned system cannot recover from such a status and a set of jobs waits indefinitely for never-to-be-released resources. In this paper, we proposed a deadlock prevention method using siphon and trap of Petri net. It is based on potential deadlock which are siphon that eventually became empty. This method prevents the deadlock by the control of transition fire and initial marking in the Petri net. An given example of FMS is shown to illustrate our results with deadlock-free.

A deadlock-Free Fault-Tolerant routing Method Using Partial-Adaptiveness in a N-Dimensional Meshed Network (N-차원 메쉬 네트워크에서의 부분적 적응성을 이용한 Deadlock-Free 결함포용 라우팅 기법)

  • Mun, Dae-Geun;Gam, Hak-Bae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.4
    • /
    • pp.1090-1097
    • /
    • 1999
  • the multi computers operated in harsh environments should be designed to guarantee normal operations in the presence of the component faults. One solution for this is a fault-tolerant routing. In the paper, we consider n-dimensional meshed network for the basic topology and propose a simple fault-tolerant routing algorithm that can transfer messages to their destination as desired in the presence of some component faults. the built algorithms basically adopts a WormHole(WH) routing method and uses the virtual channels sharing a physical channel for deadlock-freedom. Consequently, we show that the suggested algorithm has a higher performance than the X-Y routing algorithm through simulation results.

  • PDF

Supervisory Control of FMS's Using Colored Resource-Oriented Petri Net and Temporal Logic Frameworks (시간논리 구조와 Colored Resource-Oriented Petri Net을 이용한 FMS's의 감시제어)

  • Kim, Jung-Chul;Kim, Jin-Kwon;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2045-2047
    • /
    • 2001
  • In this paper, we proposed the representation method of specification and the control rules fork FMS by TPL. To increase productivity and resource utilization, it is desirable to have more active jobs in the system, but the more active jobs there are, the more easily deadlock occur. Therefore, it is very important that the real-time deadlock control to disable deadlock. In this paper, we performed the system modeling by the CROPN(Colored Resource -Oriented Petri Net) and the necessary -sufficient condition check to disable deadlock. We proposed the supervisory control system that can be the real-time monitoring for deadlock free through a necessary-sufficient condition by CROPN modelling, and designed the logic controller of the extended process using TPL.

  • PDF

An Performance Evaluation of the Deadlock Detection Algorithm in Petri Nets (패트리 넷에서의 교착 상태 확인 알고리즘 성능분석)

  • Kim, Jong-Woog;Lee, Jong-Kun
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.1
    • /
    • pp.9-16
    • /
    • 2009
  • Since a deadlock is a condition in which the excessive demand for the resources being used by others causes activities to stop, it is very important to detect and prevent a deadlock. About the deadlock detection analysis methods are may divide like as Siphon, DAPN and transitive matrix, but it's very difficult to evaluate the performance. Since DES (Discrete Event Systems) is NP-hard, and these detection and avoidance methods used various factors in each technique, it's made difficult to compare with each other's. In this paper, we are benchmarked these deadlock detection analyze methods based on the complexity, the detection time and the understanding after approached to one example.

Development of Multi-agent Based Deadlock-Free AGV Simulator for Material Handling System (자재 취급 시스템을 위한 다중 에이전트 기반의 교착상태에 자유로운 AGV 시뮬레이터 개발)

  • Lee, Jae-Yong;Seo, Yoon-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.2
    • /
    • pp.91-103
    • /
    • 2008
  • In order to simulate the behavior of automated manufacturing systems, the performance of material handling systems should be measured dynamically. Multi-Agent technology could be well adapted for the development of simulator for distributed and intelligent manufacture systems. A multi-agent system is composed of one coordination agent and multiple application agents. Issues in AGVS simulator can be classified by the set-up and operating problems. Decisions on the number of vehicles, bi- or uni-directional guide-path, etc. are fallen into the set-up problem category, while deadlock tree algorithm and conflict resolution are in operating problem. In this paper, a multi-agent based deadlock-free simulator for automated guided vehicle system(AGVS) are proposed through the use of multi-agent technologies and the development of deadlock-free algorithm. In this AGVS simulator proposed, well-known Floyd algorithm is used to create AGVS Guide path, through which AGVS move. Also, AGVs avoid vehicle conflict and deadlock using check path algorithm. And Moving vehicle agents are operated in real-time control by coordination agent. AGV position is dynamically calculated based on the concept of rolling time horizon. Simulator receives and presents operating information of vehicle in AGVS Gaunt chart. The performance of the proposed algorithm and developed simulator based on multi-agent are validated through set of experiments.

  • PDF

Fault-Tolerant Tripod Gaits Considering Deadlock Avoidance (교착 회피를 고려한 내고장성 세다리 걸음새)

  • 노지명;양정민
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.585-593
    • /
    • 2004
  • Fault-tolerant gait planning in legged locomotion is to design gaits with which legged robots can maintain static stability and motion continuity against a failure in a leg. For planning a robust and deadlock-free fault-tolerant gait, kinematic constraints caused by a failed leg should be closely examined with respect to remaining mobility of the leg. In this paper, based on the authors's previous results, deadlock avoidance scheme for fault-tolerant gait planning is proposed for a hexapod robot walking over even terrain. The considered fault is a locked joint failure, which prevents a joint of a leg from moving and makes it locked in a known position. It is shown that for guaranteeing the existence of the previously proposed fault-tolerant tripod gait of a hexapod robot, the configuration of the failed leg must be within a range of kinematic constraints. Then, for coping with failure situations where the existence condition is not satisfied, the previous fault-tolerant tripod gait is improved by including the adjustment of the foot trajectory. The foot trajectory adjustment procedure is analytically derived to show that it can help the fault-tolerant gait avoid deadlock resulting from the kinematic constraint and does not make any harmful effect on gait mobility. The post-failure walking problem of a hexapod robot with the normal tripod gait is addressed as a case study to show the effectiveness of the proposed scheme.

On a Goal-Directed Reactive Navigation Method for a Mobile Robot (이동 로봇의 자율주행을 위한 목표점 지향 반사 주행 방식)

  • 오용환;윤도영;오상록;박귀태
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.4
    • /
    • pp.246-257
    • /
    • 2004
  • This paper proposes two contributions. One is an analysis for the limit of the subject of goal-directed reactive robot navigation, and the other is an effective navigation method employing the scheme of the subject. The analysis for the subject is presented in order to clarify the limit of the method. On the basis of the analysis, a safety-guaranteeing and deadlock-free reactive navigation method is newly proposed. The proposed method has a simple behavior-based frame such that it can make the required navigation tasks such as obstacle avoidance, deadlock resolving, and etc. with a very small set of behaviors in entirely unknown environments such as a living room, an office, and etc. Some results of experiments show these validities.