• Title/Summary/Keyword: Dead-zone effect

Search Result 21, Processing Time 0.017 seconds

Effect of Salinity on the Survival and Growth of Larvae of the Boreal Digging Frog (Kaloula borealis) (맹꽁이 유생의 생장과 생존에서의 염분영향)

  • Ko, Sang-Beom;Ko, Young-Min;Lee, Jeong-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.4
    • /
    • pp.533-538
    • /
    • 2015
  • This study was conducted to examine the effect of salinity on the early embryonic development stage of boreal digging frogs (Kaloula borealis). An experiment was carried out with the eggs of K. borealis mating couples laid along the coastal zone of Jeju Island in June 2013. The salinity was set to 0, 1, 3, 5, and 7 ‰, respectively. The survival and growth of the larvae at various stages from the egg phase to the closing of their external gills phase were observed. In another experiment, tadpoles in internal gill stage were placed in solutions with salinity of 0, 1, 3, 5, and 7 ‰, respectively, and their survival rate and growth rate were observed, and then the results of the two experiments above were compared. The results showed that in egg and external gill stage, there was no significant difference in survival rate in 3 ‰ solution, though there was low survival rate in 5 ‰ solution. Further, all the eggs were dead in 7 ‰ solution, so it appeared that solutions with salinity of 5 ‰ or higher affect the survival of K. borealis in the early embryonic development. Larvae in the internal gill stage showed no significant difference in survival rate from the control group up to a salinity of 5 ‰, but when placed in a solution of over 7 ‰ salinity, the survival rate decreased. The growth rate also slowed down with the higher salinity. It appeared that in both the external gill stage and the internal gill stage in 5 ‰ solution, the growth rate decreased significantly compared to the control group. From this study it is concluded that higher salinity values have a significant impact on the survival and growth of the K. borealis larvae and this finding can be used to conserve K. borealis species that are decreasing in number due to the side effects of development in coastal areas.