• Title/Summary/Keyword: Dead time control

Search Result 332, Processing Time 0.031 seconds

The Speed Control of a Marine Diesel Engine with Electro Hydraulic Governor by using W Transformation Method (w 변환법에 의한 전기 - 유압식 조속기를 가진 박용디젤기관의 속도제어)

  • 강창남;박진길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.195-205
    • /
    • 1997
  • The propulsion marine diesel engine have been widely applied with a mechanical- hydraulic governor to control the ship speed for long time. But it was recently very difficult for the mechani¬cal - hydraulic governor to control the speed of engine under the condition of low speed and low load because of jiggling by rough fluctuation of rotating torque and hunting by dead time of Desiel engnie The performance improvement of mechanical - hydraulic governor is required to solve these problems of control system. The electro - hydraulic governor using PID algorithm is provided to compensate the faults of mechanical- hydraulic governor. In this paper, in order to analyze the ship speed control system, the transfer function was converted from the z tansformation to w transformation. The influence of dead time changing by engine speed which induces hunting phenomena was investigated by Nichols chart of w plane. As a method of performance improvement of mechanical hydraulic governor, a Eletro - hydraulic governor shows that fine control results can be obtained through optimal parameter tuning of PID

  • PDF

Design of Predictive Controller for Effective Superheat Control of Variable Speed Refrigeration System (가변속냉동시스템의 효율적인 과열도제어를 위한 예측제어기 설계)

  • Choi, Jeong-Pil;Hua, Li;Jeong, Seok-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.9-15
    • /
    • 2008
  • In this paper, we suggest PI control with a predictive controller to progress both energy saving and coefficient of performance(COP) in a variable speed refrigeration system. The capacity and superheat are controlled simultaneously and independently by an inverter and an electronic expansion valve respectively for saving energy and improving COP in the system. The refrigeration system has long dead time in superheat inherently. The dead time makes the system difficult to achieve the satisfactory quick control response, especially superheat control response. In order to solve this problem, we designed a predictive controller based on PI control to progress superheat control performance. The control performance was investigated through some experiments to verify the effectiveness of the predictive controller.

  • PDF

A novel grey TMD control for structures subjected to earthquakes

  • Z.Y., Chen;Ruei-Yuan, Wang;Yahui, Meng;Timothy, Chen
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • A model for calculating structure interacted mechanics is proposed. A structural interaction model and controller design based on tuned mass damping (TMD) was developed to control the induced vibration. A key point is to introduce a new analytical model to evaluate the properties of the TMD that recognizes the motion-dependent nonlinear response observed in the simulations. Aiming at the problem of increased current harmonics and low efficiency of permanent magnet synchronous motors for electric vehicles due to dead time effect, a dead time compensation method based on neural network filter and current polarity detection is proposed. Firstly, the DC components and the higher harmonic components of the motor currents are obtained by virtue of what the neural network filters and the extracted harmonic currents are adjusted to the required compensation voltages by virtue of what the neural network filters. Then, the extracted DC components are used for current polarity dead time compensation control to avert the false compensation when currents approach zero. The neural network filter method extracts the required compensation voltages from the speed component and the current polarity detection compensation method obtains the required compensation voltages by discriminating the current polarity. The combination of the two methods can more precisely compensate the dead time effect of the control system to improve the control performance. Furthermore, based on the relaxed method, the intelligent approach of stability criterion can be regulated appropriately and the artificial TMD was found to be effective in reducing cross-wind vibrations.

Compensation of Dead-Time in PWM Voltage Inverters

  • Somchaiwong, Nitipong;Chaidee, Ekkachai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.817-820
    • /
    • 2005
  • Dead-Time is necessary to prevent the shot circuit of the full bridge inverters in pulse width modulation. However the output voltage deviations is the result of the Dead-Time that decrease power from the out put voltage inverters. This paper presents the method that compensate power output voltage inverters loss in Dead-Time circuit for DC Motor Drives with full bridge voltage inverters. The compensation of Dead-Time method is a sample and a low-cost solution. The comparison between the test results and simulation by MATLAB&SIMULINK under the same condition is similar.

  • PDF

A study to improve the Performance of induction motor using Min Max algorithm and dead time compensation method (Min Max 알고리즘과 Dead Time 보상기법에 의한 유도전동기의 성능 향상에 관한 연구)

  • Kim, Hyung-Gu;Yang, Oh
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.976-978
    • /
    • 1999
  • Recently PWM invertor is broadly used for control of induction motor. The invertor is able to generate sin wave current from high speed switching power device such as IGBT. However the invertor is disturbed by dead time inevitably needed to prevent a short of the DC link voltage, and the dead time mainly causes distortions of the output current. In this Paper the dead time compensation method which corrects the voltage error from dead time, and Min Max algorithm enlarging the operating voltage of PWM were Proposed. This method can be implemented by software programming without any additional hardware circuit. The proposed algorithms were implemented by DSP(TMS320C31, 40MHz) and FPGA(QL2007, Quick Logic) described in VHDL. and applied to 3 phase induction motor(2.2 KW) to show the superior performance

  • PDF

Dead Time Compensation of Vector Controlled Inverter Using Space Vector Modulation Method (공간벡터 전류제어 기법을 이용한 벡터제어형 인버터의 dead time 보상)

  • Hong, Ki-Phil;Oh, Won-Seok;Kim, Young-Tae;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.265-269
    • /
    • 1994
  • The switching dead time avoiding a bridge leg short circuit in PWM voltage source inverter produces distortions of the controlling inverter output performance such as current waveform, voltage vector, and torque. In this paper, the influence of dead time is investigated. The on-line space voltage vector modulation method is used for current controller. It is possible to compensate dead time by space voltage vector modulation which generates additional pulse compensating voltage distortion caused by dead time. In addition, narrow pulse which is generally neglected can be compensated. All the algorithms, including field-oriented control are performed by one chip microprocessor 80C196MC and DSP TMS320C31. Experimental results probe that the proposed scheme provides a good inverter output performance.

  • PDF

Improved Flux and Torque Estimators of a Direct Torque Controlled Interior PM Machine with Compensations for Dead-time Effects and Forward Voltage Drops

  • Sayeef, Saad;Rahman, M.F.
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.438-446
    • /
    • 2009
  • The performance of direct torque controlled (DTC) interior permanent magnet (IPM) machines is poor at low speeds due to a few reasons, namely limited accuracy of stator voltage acquisition and the presence of offset and drift components in the acquired signals. Due to factors such as forward voltage drop across switching devices in the three phase inverter and dead-time of the devices, the voltage across the machine terminals differ from the reference voltage vector used to estimate stator flux and electromagnetic torque. This can lead to instability of the IPM drive during low speed operation. Compensation schemes for forward voltage drops and dead-time are proposed and implemented in real-time control, resulting in improved performance of the space vector modulated DTC IPM drive, especially at low speeds. No additional hardware is required for these compensators.

Digital variable structure control of a hot-water heating control system with long dead time (긴 지연시간을 갖는 온수난방 제어시스템의 디지틀 가변구조제어)

  • 안병천;장효환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.232-237
    • /
    • 1991
  • Digital Variable Structure Controller(DVSC) is proposed to control variable speed recirculating pump for hot-water heating control system. In this study, nonlinear sliding line is used beyond output error boundary layer and PID sliding line is used within the layer. For long dead time compensation, constraint is added to Smith predictor algorithm. Steady state error is eliminated by using the proposed sliding line in spite of heating load change. By decreasing sampling time, good sliding motion is yielded but system output noise bv flow dynamics is amplified.

  • PDF

A Dead Time Compensation Algorithm of Independent Multi-Phase PMSM with Three-Dimensional Space Vector Control

  • Park, Ouk-Sang;Park, Je-Wook;Bae, Chae-Bong;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.77-85
    • /
    • 2013
  • This paper proposes a new dead time compensation method of independent six-phase permanent magnet synchronous motors (IS-PMSM). The current of the independent phase machines contains odd-numbered harmonics because of the dead time and the nonlinear characteristics of the switching devices. By using the d-q-n three-dimensional vector analysis, these harmonics can be extracted at the n-axis current. Thus, the current distortion can be compensated by controlling the n-axis current of the IS-PMSM to zero. The proposed method is simple and can be easily implemented without additional hardware setup. The validity of the proposed compensation method is verified with simulations and several experiments.

A New On-Line Dead-Time Compensator for Single-Phase PV Inverter (단상 PV 인버터용 온라인 데드타임 보상기 연구)

  • Vu, Trung-Kien;Lee, Sang-Hoey;Cha, Han-Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.409-415
    • /
    • 2012
  • This paper presents a new software-based on-line dead-time compensation technique for a single-phase grid-connected photovoltaic (PV) inverter system. To prevent a short circuit in the inverter arms, a switching delay time must be inserted in the pulse width modulation (PWM) signals. This causes the dead-time effect, which degrades the system performance around zero-crossing point of the output current. To reduce the dead-time effect around the zero-crossing point of grid current, a harmonic mitigation of grid current is used as an additional part of the synchronous frame current control scheme. This additional task mitigates the harmonic components caused by the dead-time from the grid current. Simulation and experimental results are shown to verify the effectiveness of the proposed dead-time compensation method in the single-phase grid-connected inverter system.