• 제목/요약/키워드: Dead cells

검색결과 250건 처리시간 0.026초

Anabaena flos-aquae 에서의 세포사멸계수(Cell Death Constant)의 측정 (Measurement of Cell Death Constant in Anabaena flos-aquae (Cyanophyceae) by the Molecular Probe)

  • 오인혜
    • The Korean Journal of Ecology
    • /
    • 제20권3호
    • /
    • pp.169-173
    • /
    • 1997
  • The measurement of cell death constant in Anabaena flos-aquae was tested by the Live/Dead BacLight Viability kit(Molecular Probes Co., Seatle, WA). When the Live/Dead BacLight Viability kit was applied to Anabaena flos-aquae, the cells with intact cell membranes(live cells) stained fluorescent green, while the cell with damaged membranes(dead cells) stained fluorescent red and the background remained virtually nonfluorescent. The rations of live : dead cells in the cell suspension were controlled artifically and Live/Dead BacLight Viability kit was applied to them. The ratios of green:red fluorescent cells in the cell suspension were the same as those of live : dead cells controlled artifically. It was also approved by the fluorescence emission. The cell death constant was measured in the P-limited Anabaena flos-aquae chemostal culture in the N-fixing and $KNO_3-supplied$ conditions. The culture in N-fixing chemostat had a dead cell proportion of 1.2% at the growth rate of 0.7/day and increased to 2.6% at the growth rate of 0.3/day. The cell death constant of N-fixing culture was 0.008/day.There was a same trend in the $KNO_3-supplied$ chemostat culture. The proportion of dead cell was 1.6% of dead cell proportion at the growth rate of 0.7/day and increased to 4.3% at the growth rate of 0.3/day.

  • PDF

Dead cell phagocytosis and innate immune checkpoint

  • Yoon, Kyoung Wan
    • BMB Reports
    • /
    • 제50권10호
    • /
    • pp.496-503
    • /
    • 2017
  • The human body loses several billions of cells daily. When cells die in vivo, the corpse of each dead cell is immediately cleared. Specifically, dead cells are efficiently recognized and cleared by multiple types of neighboring phagocytes. Early research on cell death focused more on molecular mechanisms of cell death regulation while the cellular corpses were merely considered cellular debris. However, it has come to light that various biological stimuli following cell death are important for immune regulation. Clearance of normal dead cells occurs silently in immune tolerance. Exogenous or mutated antigens of malignant or infected cells can initiate adaptive immunity, thereby inducing immunogenicity by adjuvant signals. Several pathogens and cancer cells have strategies to limit the adjuvant signals and escape immune surveillance. In this review, we present an overview of the mechanisms of dead cell clearance and its immune regulations.

Comparison of LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ Bacterial Viability Test and alamarBlue$^{(R)}$ Method for Enumeration of Live and Dead Bacteria for Oral Bacterial Species

  • Kim, Yeon-Hee;Lee, Si Young
    • International Journal of Oral Biology
    • /
    • 제37권4호
    • /
    • pp.197-201
    • /
    • 2012
  • LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ and alamarBlue$^{(R)}$ are fluorescent materials used for the enumeration of live and dead bacteria. LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ is generally used for confocal microscopy applications to differentiate live from dead bacteria in a biofilm or planktonic state. AlamarBlue$^{(R)}$ has also been used widely to assay live and dead bacteria in a planktonic state. Whilst these materials are successfully utilized in experiments to discriminate live from dead bacteria for several species of bacteria, the application of these techniques to oral bacteria is limited to the use of LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ in biofilm studies. In our present study, we assessed whether these two methods could enumerate live and dead oral bacterial species in a planktonic state. We tested the reagents on Streptococcus mutans, Streptococcus sobrinus, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and Enterococcus faecalis and found that only LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ could differentiate live from dead cells for all five of these oral strains. AlamarBlue$^{(R)}$ was not effective in this regard for P. gingivalis or A. actinomycetemcomitans. In addition, the differentiation of live and dead bacterial cells by alamarBlue$^{(R)}$ could not be performed for concentrations lower than $2{\times}10^6$ cells/ml. Our data thus indicate that LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ is a more effective reagent for this analysis.

Determination of human breast cancer cells viability by near infrared spectroscopy

  • Isoda, Hiroko;Emura, Koji;Tsenkova, Roumiana;Maekawa, Takaaki
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.4105-4105
    • /
    • 2001
  • Near infrared spectroscopy (NIRS) was employed to qualify and quantify on survival, the injury rate and apoptosis of the human breast cancer cell line MCF-7 cells. MCF-7 cells were cultured in RPMI medium supplemented with 10% FCS in a 95% air and 5% CO2 atmosphere at 37$^{\circ}C$. For the viable cells preparation, cells were de-touched by 0.1% of trypsin treatment and washed with RPMI supplemented with 10% FCS medium by centrifugation at 1000 rpm for 3min. For the dead cells preparation, cells were de-touched by a cell scraper. The cells were counted by a hemacytometer, and the viability was estimated by the exclusion method with frypan blue dye. Each viable and dead cells were suspended in PBS (phosphate bufferred saline) or milk at the cell density desired. For the quantitative determination of cell death by measuring the LDH (lactate dehydrogenase) activity liberated from cells with cell membrane injuries, LDH-Cytotoxic Test Wako (Wako, Pure Pharmaceutical Co. Ltd., Japan) was used. We found that NIRS measurement of MCF-7 cells at the density range could evaluate and monitor the different characteristics of living cells and dead cells. The spectral analysis was performed in two wavelength ranges and with 1,4, 10 mm pathlength. Different spectral data pretreatment and chemometrics methods were used. We applied SIMCA classificator on spectral data of living and dead cells and obtained good accuracy when identifying each class. Bigger variation in the spectra of living cells with different concentrations was observed when compared to the same concentrations of dead cells. PLS was used to measure the number of cells in PBS. The best model for measurement of dead cells, as well as living cells, was developed when raw spectra in the 600-1098 nm region and 4 mm pathlength were used. Smoothing and second derivative spectral data pretreatment gave worst results. The analysis of PLS loading explained this result with the scatter effect found in the raw spectra and increased with the number of cells. Calibration for cell count in the 1100-2500 nm region showed to be very inaccurate.

  • PDF

대면적 고분자전해질 연료전지의 데드엔드 운전 (Dead-end Mode Operation of a Large Scale PEM Fuel Cell Stack)

  • 정지훈;신현길;한인수;서하규;김민성;조성백;허태욱
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.83.1-83.1
    • /
    • 2010
  • A Dead-end mode operation is one of the best way to maximize the gas usage rate. But, some components of fuel cell stack like gas diffusion layer(GDL) or membrane can be damaged in dead-end mode operation. In this study, a Large Scale Polymer electrolyte membrane fuel cell(PEMFC) for a dead-end operation has been developed. The stack is composed with 4 cells which has over 400cm2 of active area. Hydrogen is used as a fuel, and oxygen is used as a oxidant. The dead-end operation performance was evaluated by a long-term dead-end mode operation. The fuel cell stack is operated over 1,500 hours in dead-end mode operating fuel cell test station. And the performance change of the fuel cell stack was investigated.

  • PDF

Ethidium monoazide (EMA) - PCR 법을 이용한 비배양성 생존 상태(VBNC)의 Edwardsiella tarda 검출 (Differentiations between the viable but nonculturable (VBNC) or dead state of Edwardsiella tarda by ethidium monoazide (EMA) treatment-PCR)

  • 강남이;김은희
    • 한국어병학회지
    • /
    • 제31권2호
    • /
    • pp.93-99
    • /
    • 2018
  • Edwardsiella tarda predominantly causes edwardsiellosis in fish at high temperature, but is rarely isolated from water when water temperature is low. However, E. tarda is viable but nonculturable (VBNC) in low water temperature, but it can be revived when water temperature rises and cause disease to fish. Therefore, in order to prevent disease, it is very important to identify pathogens that are in the VBNC state in environmental water. In this study, E. tarda cells in the VBNC state were detected by the ethidium monoazide (EMA)-PCR method using the low-temperature oligotrophic sea water microcosm obtained by inoculation of E. tarda at a concentration of $10^8CFU/ml$. In order to distinguish between live and dead bacteria in E. tarda, each sample was treated with EMA at different concentrations, photoactivated with a 500 W halogen lamp, and PCR was performed with E. tarda specific primer. At the concentration of $10^7CFU/ml$ bacterium, DNA amplification was observed only in the live cells when treated with $60{\mu}g/ml$ of EMA, and smaller amounts of live cells could be distinguished from dead cells by adjusting the EMA concentration. In addition, the VBNC cells of E. tarda in the oligotrophic low temperature seawater microcosm were estimated to be in the range of $10^4{\sim}10^5CFU/ml$ by EMA-PCR. Therefore, it is possible to detect VBNC cells that will act as potential pathogens in environmental water using EMA-PCR method, and quantitative confirmation using concentration change is also possible.

Dead Block-Aware Adaptive Write Scheme for MLC STT-MRAM Caches

  • Hong, Seokin
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권3호
    • /
    • pp.1-9
    • /
    • 2020
  • 본 논문에서는 MLC STT-MRAM 캐시 메모리의 쓰기 동작 성능을 향상시킬 수 있는 효율적인 쓰기 기법을 제안한다. 제안하는 기법의 핵심 아이디어는 MLC STT-MRAM에 저장된 캐시 블록이 데드 블록 (Dead block)일 경우 쓰기 동작을 빠르게 수행하는 것이다. 이러한 빠른 쓰기 동작은 MLC STT-MRAM에 저장된 캐시 블록을 제거할 수 있지만, 제거된 블록이 앞으로 사용되지 않는 데드 블록일 경우에는 시스템 성능에 미치는 영향이 매우 작다. 메모리 시뮬레이터를 사용한 실험 평가를 통해 본 논문에서 제안하는 쓰기 기법이 MLC STT-MRAM 캐시의 성능을 평균 17% 향상시킬 수 있음을 보인다.

Dead Lactobacillus plantarum Stimulates and Skews Immune Responses toward T helper 1 and 17 Polarizations in RAW 264.7 Cells and Mouse Splenocytes

  • Lee, Hyun Ah;Kim, Hyunung;Lee, Kwang-Won;Park, Kun-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.469-476
    • /
    • 2016
  • This study was undertaken to evaluate the immunomodulatory effect of dead nano-sized Lactobacillus plantarum (nLp) in RAW 264.7 cells and murine primary splenocytes. nLp is a dead, shrunken, processed form of L. plantarum nF1 isolated from kimchi (a traditional Korean fermented cabbage) and is less than 1 μm in size. It was found that nLp treatment stimulated nitric oxide (NO) production more in RAW 264.7 macrophages than pure live L. plantarum (pLp), and that the stimulatory properties were probably largely derived from its cell wall. In addition, nLp induced murine splenocyte proliferation more so than pLp; in particular, a high dose of nLp (1.0 × 1011 CFU/ml) stimulated proliferation as much as lipopolysaccharide at 2 μg/ml. Moreover, according to our cytokine profile results in splenocytes, nLp treatment promoted Th1 (TNF-α, IL-12 p70) responses rather than Th2 (IL-4, IL-5) responses and also increased Th17 (IL-6, IL-17A) responses. Thus, nLp stimulated NO release in RAW 264.7 cells and induced splenocyte proliferation more so than pLp and stimulated Th1 and Th17 cytokine production. These findings suggested that dead nLp has potential use as a functional food ingredient to improve the immune response, and especially as a means of inducing Th1/Th17 immune responses.

Analysis of newly designed CDI cells by CFD and its performance comparison

  • Kwon, Se Hwan;Rhim, Ji Won
    • Membrane and Water Treatment
    • /
    • 제7권2호
    • /
    • pp.115-126
    • /
    • 2016
  • In this study, computational fluid dynamics (CFD) analysis was conducted to investigate the flow pattern and to find the occurrence of dead zones in an existing capacitive deionization (CDI) cell. Newly designed cells-specifically designed to avoid dead zones-were analyzed by CFD in accordance with the flow rates of 15, 25 and 35 ml/min. Next, the separation performances between the existing and newly designed cell were compared by conducting CDI experiments in terms of salt removal efficiency at the same flow rates. Then, the computational and experimental results were compared to each other. The salt removal efficiencies of the hexagon flow channel 1 (HFC1) and hexagon flow channel 2 (HFC2) were increased 88-124% at 15 ml/min and 49-50% at 25 ml/min, respectively. There was no difference between the existing cell and the foursquare flow cell (FFC) at 35 ml/min.

Cryopreservation of Semen in Dead Yellow Croaker, Larimichthys polyactis

  • Lim, Han-Kyu;Min, Byung-Hwa;Jeong, Min-Hwan;Choi, Byul-Nim;Le, Minh Hoang;Chang, Young-Jin
    • Fisheries and Aquatic Sciences
    • /
    • 제13권4호
    • /
    • pp.350-353
    • /
    • 2010
  • This study demonstrated that cryopreserved semen from dead fish can be used for seedling production. Yellow croakers, Larimichthys polyactis, were killed and stored at temperatures of $20^{\circ}C$ or $0^{\circ}C$ for 6 hours. At 2 hour intervals, semen from these fish was collected using abdominal pressure and evaluated for spermatozoa motility and semen cryopreservation. Semen collected after 6 hours from dead fish stored at $0^{\circ}C$ could be cryopreserved and attained fertilization and hatching rates of $15.0{\pm}1.2%$ and $14.8{\pm}1.6%$, respectively. This study suggests that germ cells such as the semen of dead fish can be cryopreserved and utilized in the restoration of a species.