• Title/Summary/Keyword: Dead angle

Search Result 122, Processing Time 0.028 seconds

The Comparative Analysis on the Kinematic Variables according to the Types of Stance in the Dead-lift of Snatch Events of Junior Weight Lifters (주니어 역도 선수 인상 종목의 Dead-lift 동작 시 스탠스유형에 따른 운동학적 변인 비교분석)

  • Chung, Nam-Ju;Kim, Jae-Pil
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.99-107
    • /
    • 2008
  • The aim of this study was to provide fundamental data in training to improve athletes' competitiveness through the comparative analysis of kinematic variables according to the types of stance. For this study, the subjects selected 4 Junior Weight lifters. Subjects performed two type(8-type and 11-type) Dead-lift and their performance was sampled at 60frame/sec. using four high-speed digital video cameras. After digitizing images from four cameras, the two-dimensional coordinates were used to produce three-dimensional coordinates of the 15 body segments(20 joint makers and 2 bar makers). And the results were as follows. 1. As for the time required for stances, 8-type motion was faster than 11-type motion. 2. As for the body-center shift in stances, 8-type motion was bigger than 11-type motion in back and forth motion shift, and 11-type motion was bigger than 8-type motion in right and left, up and down motion shift. 3. As for the speed of a body-center and a babel, 8-type motion was faster than 11-type motion. 4. As for the motion-trace of a babel in stances, 8-type motion was bigger than 11-type in back and forth, right and left motion and 11-type motion was bigger than 8-type in up and down motion. 5. As for the body-angles in stances, 8-type motion was bigger than 11-type in the stance angle, and 11-type motion is bigger than 8-type in the angles of a coxa, a knee and an ankle. As a result of the comparative analysis between 8-type and 11-type stance of Junior Weight lifters dead-lift, both were generally similar in variables, but 8-type motion was more stable than 11-type in aspects of time, speed, center shift, angle change.

Improvement of Membrane Performance by Natural Convection Instability Flow in Ultrafiltration of Colloidal Solutions (콜로이드 용액의 한외여과에서 자연대류 불안정 흐름의 막성능 개선 효과)

  • Cho, Youn-Joo;Youm, Kyung-Ho
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.84-90
    • /
    • 2011
  • We studied the effects of induction of natural convection instability flow (NCIF) according to the gravitational orientation (inclined angle) of the membrane cell on the reduction of membrane fouling in ultrafiltration (UF) of colloidal silica solutions. Five colloidal silica solutions with different silica size (average size = 7, 12, 22, 50 and 78 nm) were used as UF test solutions. The silica particles in colloidal solutions form cakes on the membrane surface thereby causing severe reduction in the flux. The UF performance according to the gravitational orientation of the membrane cell (from 0 to $180^{\circ}$ inclined angle), was examined in an unstirred dead-end cell. We evaluate the effects of NCIF on membrane performance as the flux enhancement ($E_i$). In the dead-end UF of smaller size (7, 12 and 22 nm) silica colloidal solutions, changing the gravitational orientation (inclined angle) of the membrane cell induces NCIF in the membrane module and higher inclined angle and smaller size silica colloidal solution offer more stronger NCIF. This induced NCIF enhances back transport of the deposited silica solutes away from the membrane surface, therefore gives for the improvement of permeate flux. But in UF of more larger size (50 and 78 nm) silica colloidal solutions, NCIF effects are not appearing. These results suggest that the size of colloidal particle affects the extent of NCIF occurrence.

Personal Navigation System Using GPS and Dead Reckoning (GPS와 추축항법을 이용항 개인휴대 항법시스템)

  • Hong, Jin-Seok;Yoon, Seon-Il;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.454-464
    • /
    • 2001
  • In this paper, a personal navigation system is developed using GPS and dead reckoning sensors. This personal navigation system can be used to track a person inside a building, on an urban street, and in the mountain area. GPS can provide accurate absolute position information, but it cant be used without receiving enough satellite signals. Although the inertial sensors such as gyro an accelerometer and be used without this diggiculty, the inertial sensors severely suffer from their drift errors and the magne-tometer can be easily distorted by surrounding electromagnetic field. GPS and DR sensors can be inte-grated together to overcome these problems. A new personal navigation system that can be carried wit person is developed. A pedometer. actually vertically mounted accelerometer, detects ones footstep and gyro detects heading angle. These DR sensors are integrated with GPS and the humans walking pattern provides additional navigation information for compensating the DR sensors. The field testes are performed to evaluated the proposed navigation algorithm.

  • PDF

A study on accumulated damage of steel wedges with dead-rise 10° due to slamming loads

  • Seo, Byoungcheon;Truong, Dac Dung;Cho, Sangrai;Kim, Dongju;Park, Sookeun;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.520-528
    • /
    • 2018
  • This paper presents the results of experimental investigation on the elastic-plastic response of steel unstiffened wedges with dead-rise $10^{\circ}$ subjected to repeated impulsive pressure loadings. Repeated drop tests were performed with both wedge thickness and drop height varied. The pressure and histories were recorded during the tests and the permanent deflections were measured after every drop. Using the recorded test result, the effects of flexibility of wedges and repetition have been investigated. From the pressure history obtained from the tests the characteristics of the impulses were identified. Numerical simulations of the tests were made using the measured pressure history and the permanent deflection predictions were compared with those of the experiments.

A THREE DIMENSIONAL LOCATION SYSTEM FOR HIKER WALKING SPEEDS BASED ON CONTOUR LINES

  • Wu, Mary;Ahn, Kyung-Hwan;Chen, Ni;Kim, Chong-Gun
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.703-714
    • /
    • 2009
  • GPS is especially suitable for location systems in flat areas, but the availability of GPS is limited in highly urbanized and mountain areas, due to the nature of satellite communications. Dead reckoning is generally used to solve a location problem when a pedestrian is out of range of GPS coverage. To extend the apparent coverage of the GPS system for a hiker in mountain areas, we propose an integrated 3D location system that interpolates a 3D dead reckoning system based on information about contour lines. The speeds of hikers vary according to the inclination of the ground in sloped areas such as mountains. To reduce location measurement errors, we determine the angle of inclination based on the contour lines of the mountain, and use the speeds based on the inclination in the location system. The simulation results show that the proposed system is more accurate than the existing location system.

  • PDF

Flow Analysis of Rivers by using FESWMS-2DH (FESWMS-2DH를 이용한 하천의 흐름 해석)

  • Lee, Cheol-Eung;Shim, Jae-Wook;Park, Dong-Heon
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.111-122
    • /
    • 2009
  • In this study, flood stage was computed by HEC-RAS, 1-D numerical analysis model and FESWMS-2DH, 2-D numerical model. Flood stages computed by two different models were compared for straight line, dot axle watercourse, dead-zone watercourse, section sudden-changing watercourse, and curved watercourse. From the results, flow velocity and water level were similar in straight watercourse and dot-reduction watercourse. However, there was difference of flow velocity and water level in dead-zone watercourse, sudden expansion, dot-reduction, and curve-watercourse. This result might be influenced by rapid change of watercourse due to dead-zone, the angle of inflow and outflow, and the curvature. Especially in this study, numerical model was applied to Wol-Song-Cheon at Chuncheon in order to analyze the effect of flood stage by two different models. By flowing properties around the bridge and confluence of rivers, it was found that flow velocity and water level was changed. Therefore, it was concluded that a lot of uncertainties are contained in the present bank.

  • PDF

Dead reckoning navigation system for autonomous mobile robot using a gyroscope and a differential encoder (자이로스코프와 차등 엔코더를 사용한 이동로보트의 추측항법 시스템)

  • 박규철;정학영;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.241-244
    • /
    • 1997
  • A dead reckoning navigation system is developed for autonomous mobile robot localization. The navigation system was implemented by novel sensor fusion using a Kalman filter. A differential encoder and the gyroscope error models are developed for the filter. An indirect Kalman filter scheme is adopted to reduce the computational burden and to enhance the navigation system reliability. The filter mutually compensates the encoder errors and the gyroscope errors. The experimental results show that the proposed mobile . robot navigation algorithm provides the reliable position and heading angle of the mobile robot without any help of the external positioning systems.

  • PDF

Correction of TDC Position for Engine Output Measuring in Marine Diesel Engines (선박용 디젤엔진의 출력산정을 위한 TDC 위치보정에 관한 연구)

  • Jung, Kyun-Sik;Choi, Jun-Young;Jeong, Eun-Seok;Choi, Jae-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.459-466
    • /
    • 2012
  • The accurate engine output is basically one of important factors for the analysis of engine performance. Nowadays in-cylinder pressure analysis in internal combustion engine is also an indispensable tool for engine research and development, environment regulation and maintenance of engine. Here, it is essential more than anything else to find the correct TDC(Top Dead Center) position for the accuracy of engine output for diesel engine. Therefore this study is to analyze affecting factors to TDC position in 2-stroke large low speed engine and to suggest new method for determining correct TDC position. In the previous paper, it was mentioned that the accuracy of engine output is influenced by the determination of exact TDC position, and that 'Angle based sampling' method is better than 'Time based sampling' method in terms of precision. It was confirmed that there is 'Loss of angle', which is a difference between compression pressure peak and real TDC caused by heat loss and blow by of gas leakage. Consequently we invented new method, called "An improved method of time based sampling", which can obtain the correct engine output. The results by this method with compensating loss of angle was shown the same result by the 'Angle based sampling' method in encoder setting cylinder. This study is to suggest the new measuring method of exact engine output, and to examnine the reliance on the outcome.

Motion-based ROI Extraction with a Standard Angle-of-View from High Resolution Fisheye Image (고해상도 어안렌즈 영상에서 움직임기반의 표준 화각 ROI 검출기법)

  • Ryu, Ar-Chim;Han, Kyu-Phil
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.395-401
    • /
    • 2020
  • In this paper, a motion-based ROI extraction algorithm from a high resolution fisheye image is proposed for multi-view monitoring systems. Lately fisheye cameras are widely used because of the wide angle-of-view and they basically provide a lens correction functionality as well as various viewing modes. However, since the distortion-free angle of conventional algorithms is quite narrow due to the severe distortion ratio, there are lots of unintentional dead areas and they require much computation time in finding undistorted coordinates. Thus, the proposed algorithm adopts an image decimation and a motion detection methods, that can extract the undistorted ROI image with a standard angle-of-view for the fast and intelligent surveillance system. In addition, a mesh-type ROI is presented to reduce the lens correction time, so that this independent ROI scheme can parallelize and maximize the processor's utilization.

Dead Zone Correction for Abundance Estimation of Demersal Fish by Acoustic Method (저서어자원량의 음향추정에 있어서 해저 데드존의 보정에 관한 연구)

  • 황두진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.202-209
    • /
    • 2000
  • In order to estimate demersal fishes using acoustic echo sounders and echo integrators, we consider several problems that are accurate bottom detection, optimum bottom offset and dead zone. The dead zone where no fish detection are summed distance resolution by the half pulse length of transmitted pulse and beam angle above the seabed. This paper has considered the dead-zone correction method to be technically correct for survey of demersal fishes. A comparison between near-bottom SV profiles acquired in Funka Bay, Hokkaido, of Japan, the East China Sea and the Yellow Sea, of Korea, with before and after the bottom correction, shows that the SV obtained with after the bottom correction is 2∼3dB higher than before the bottom correction in Funka Bay, and 17dB higher in East China Sea, too.

  • PDF