• Title/Summary/Keyword: Deacetylase

Search Result 241, Processing Time 0.032 seconds

Partial Cloning of Histone Deacetylase Genes from Ganoderma lucidum. (영지에서 Histone Deacetylase 유전자의 부분 클로닝)

  • Kim Sunkyung;Kum Joohee;Choi Hyoung T.
    • Korean Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.226-229
    • /
    • 2004
  • Histone deacetylase (HDAC) removes acetyl group in lysine residue of histone protein, which is transferred by histone acetylase. HDAC is important in the stabilization and regulation of gene expression in eukaryotic organisms. PCR has been carried out to clone HDAC genes using cDNA library and genomic DNA as the templates from Ganoderma lucidum isolated in Korea. One 470 bp cDNA gene fragment, and 3 genomic HDAC fragments (585 bp, 589 bp, 630 bp) were amplified. When their deduced amino acid sequences were compared with other fungal HDACs, they showed 59-72% homology.

The Fission Yeast Hda1p Functions on the Regulation of Proper Cell Division

  • Hwang, Hyung-Seo;Suh, Na-Young;Song, Ki-Won
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.263-267
    • /
    • 2000
  • We cloned $hda1^+$ (histone deacetylase 1) of fission yeast Schizosaccharomyces pombe. The hda1 of S. pombe was previously reported to encode for an active histone deacetylase (Rundlett et al., 1996; Olsson et al., 1998). The $hda1^+$ is phylogenetically related to the new open reading frame HOS2 of Saccharomyces cerevisiae and only shows a partial homology to the well-known histone deacetylase subclasses, RPD3 and HDA1. A single hda1 mRNA of 1.8 kb was detected at the same level in actively growing and nitrogen-starved cells. When highly over-expressed in S. pombe from an inducible promoter, $hda1^+$ inhibited cell proliferation and caused defects in morphology and cell division. The increased histone deacetylase activity was detected in hdar over-expressing cells. These results suggest that the Hda1p should function on the regulation of cell division possibly by (Allfrey, 1966) direct deacetylation of cytoskeletal (Wade et al., 1997) and cell division regulatory proteins, (Wolffe, 1997) or by controlling their gene expressions.

  • PDF

Study of Thermostable Chitinase Enzymes from Indonesian Bacillus K29-14

    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.647-652
    • /
    • 2004
  • Thermophilic microorganisms capable of producing chitinase enzymes were screened from samples collected from several crater and geothermal areas. The chitinolytic microorganisms were grown in a selective medium containing colloidal chitin. The Bacillus K29-14 isolate was found to exhibit the highest chitinase and chitin deacetylase activities. When grown in a chitin-containing medium, the isolate produced extracellular chitinase after 24 h of incubation. The optimum temperature and pH for the chitinase were $55^\circ{C}$ and pH 7, respectively, while those for the chitin deacetylase were $55^\circ{C}$ and pH 8, respectively. The thermostable chitinase and chitin deacetylase also retained 80- 90% of their activity after incubation for 5 h at $70^\circ{C}$. The divalent cations $CoCl_2\;and\;NiCl_2$, increased the chitinase activity, while $ZnCl_2$, inhibited the enzyme. The chitin deacetylase was also activated by the presence of $MgCl_2$ and inhibited by $MnCl_2,\;NiCl_2,\;and\;CaCl_2$. A zymogram analysis revealed several forms of chitinase, with a 67 kDa form being the major enzyme.

Synthesis and High Expression of Chitin Deacetylase from Colletotrichum lindemuthianum in Pichia pastoris GS115

  • Kang, Lixin;Chen, Xiaomei;Zhai, Chao;Ma, Lixin
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1202-1207
    • /
    • 2012
  • A gene, ClCDA, encoding chitin deacetylase from Colletotrichum lindemuthianum, was optimized according to the codon usage bias of Pichia pastoris and synthesized in vitro by overlap extension PCR. It was secretorily expressed in P. pastoris GS115 using the constitutive expression vector pHMB905A. The expression level reached the highest with 110 mg/l culture supernatant after 72 h of methanol induction, which comprised 77.27 U/mg chitin deacetylase activity. SDS-PAGE, mass spectrometry, and deglycosylation assays demonstrated that partial recombinant protein was glycosylated with an apparent molecular mass of 33 kDa. The amino acid sequences of recombinant proteins were confirmed by mass spectrometry.

Analysis of Amino Acid Residues Involved in Activities of Chitin Deacetylase of Aspergillus nidulans (Aspergillus nidulans에서 분리된 키틴 탈아세틸화 효소활성에 영향을 미치는 아미노산 잔기 분석)

  • Kim, Jong-Il;Song, Da-Hyun
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.302-307
    • /
    • 2011
  • Native chitin deacetylase of Aspergillus nidulans was purified to apparent homogeneity by a combination of phenyl-Sepharose and Q-Sepharose column chromatography. In order to analyze the amino acid residues involved in the enzyme activity, the enzyme was chemically modified with chemical agent, which selectively reacted with the specific amino acid residue on the protein. When the enzyme was chemically modified with diethylpyrocarbonate, which specifically reacted with histidine residues on the protein, the activity was eliminated. The chitin deacetylase, chemically modified with 100 ${\mu}M$ modifier at the residue of arginine or tyrosine, has shown to have decreased activities. It was shown that the modification at aspartic acid or glutamic acid did not affect the enzyme activity to a greater extent, which would not implicate that acid amino residues were directly involved in catalytic reaction and would affect on the global structures of the proteins. This results demonstrated that histidine and tyrosine residues of enzyme would participate in an important function of the chitin deacetylase activity.

Histone Deacetylase in Carcinogenesis and Its Inhibitors as Anti-cancer Agents

  • Kim, Dong-Hoon;Kim, Min-Jung;Kwon, Ho-Jeong
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.110-119
    • /
    • 2003
  • The acetylation state of histone is reversibly regulated by histone acetyltransferase (HAT) and deacetylase (HDAC). An imbalance of this reaction leads to an aberrant behavior of the cells in morphology, cell cycle, differentiation, and carcinogenesis. Recently, these key enzymes in the gene expression were cloned. They revealed a broad use of this modification, not only in histone, but also other proteins that involved transcription, nuclear transport, and cytoskeleton. These results suggest that HAT/HDAC takes charge of multiple-functions in the cell, not just the gene expression. HDAC is especially known to play an important role in carcinogenesis. The enzyme has been considered a target molecule for cancer therapy. The inhibition of HDAC activity by a specific inhibitor induces growth arrest, differentiation, and apoptosis of transformed or several cancer cells. Some of these inhibitors are in a clinical trial at phase I or phase II. The discovery and development of specific HDAC inhibitors are helpful for cancer therapy, and decipher the molecular mode of action for HDAC.

Cytochrome P-450 3A4 Proximal Promoter Activity by Histone Deacetylase Inhibitor in Hepg2 Cells

  • Kim, Ja-Young;Ahn, Mee-Ryung;Sheen, Yhun-Yhong
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.166-166
    • /
    • 2003
  • Cytochrome P-450 3A4 (CYP3A4) is major enzyme in human liver, the role of this is detoxification and metabolizing more than 50% clinical drugs in use. The transcription of CYP3A4 is regulated by the Pregnenolone X receptor (PXR),of which human form is Steroid and Xenobiotics receptor (SXR).(omitted)

  • PDF