• 제목/요약/키워드: De-Nitrification

검색결과 6건 처리시간 0.023초

Performance of a submerged membrane bioreactor for wastewater mimicking fish meal processing effluent

  • Lopez, Guadalupe;Almendariz, Francisco J.;Heran, Marc;Lesage, Geoffroy;Perez, Sergio
    • Membrane and Water Treatment
    • /
    • 제9권4호
    • /
    • pp.263-271
    • /
    • 2018
  • The objective of this work was to analyze organic matter removal, nitrification, biomass growth and membrane fouling in a submerged flat-sheet membrane bioreactor, fed with synthetic wastewater, of similar composition to the effluents generated in a fish meal industry. After biomass acclimatization with saline conditions of 12 gNaCl/L and COD/N ratio of 15 in the bioreactor, results showed that the organic matter removal was higher than 90%, for all organic loading rates (0.8, 1, 1.33 and $2gCOD/L{\cdot}d$) and nitrogen loading rates (0.053, 0.067, 0.089 and $0.133gN/L{\cdot}d$) tested during the study. However, nitrification was only carried out with the lowest OLR ($0.8gCOD/L{\cdot}d$) and NLR ($0.053gN/L{\cdot}d$). An excessive concentration of organic matter in the wastewater appears as a limiting factor to this process' operating conditions, where nitrification values of 65% were reached, including nitrogen assimilation to produce biomass. The analysis of membrane fouling showed that the bio-cake formation at the membrane surface is the most impacting mechanism responsible of this phenomenon and it was demonstrated that organic and nitrogen loading rates variations affected membrane fouling rate.

자연현상을 이용한 질산화-탈질공정에 의한 하수처리장 유출수의 질소제거 (Reduction of the Nitrogen in the Secondary Effluent by the Hybrid Sequential Aerobic-Anoxic Natural System)

  • 김영철;정팔진;안익성
    • 대한환경공학회지
    • /
    • 제27권3호
    • /
    • pp.323-329
    • /
    • 2005
  • 본 논문은 호기-혐기 조건이 연속적으로 반복 운영되는 자연정화시스템의 질소제거에 관한여 연구하였다. 조류 광합성 활동을 극대화한 산화지(WSP: Waste Stabilization Pond)에서 호기조건을, 부레옥잠 잎과 줄기에 의해 태양광이 차단되어 산화지로부터 유입된 조류의 내호흡과 뿌리에 부착된 미생물 호흡에 의해 혐기조건이 형성되는 WHP(Water Hyacinth Pond)를 조합하여 운전하였다. Pilot plant는 2개 계열로 구성하여 운전하였다. 첫번째는 WHPs와 WSPs로 조합하였고, 두번째는 WSP와 질산화와 탈질화에 대한 식물의 효과를 평가하기 위해 대조반응조로 태양광을 차단한 반응조(DPs: Dark Ponds)를 조합하였다. 연구결과에 따르면 질소에 대한 전체적인 제거능력은 WSP-WHP에서 발휘되었으며 약 86%가 감소되었고 대조반응조 WSP-DP에서는 36%가 감소되었다. 대부분 질소는 WSP에서 질산화 된 후 WHP에서 탈질에 의해 제거되었다. 탈질이 원활히 수행될려면 외부탄소원이 필요한데 수생식물조 하부 수층에서 조류의 부패로 탄소원이 공급되었다. 그리고 WSP-WHP 시스템은 인 제거에도 매우 효과적이었다. WSP-WHP에서 인 제거율은 81%인 반면에 WSP-DPs에서는 단지 16%에 불과했다. 이들 두 시스템간의 인 제거율의 차이는 아마도 식물증식과 식물 뿌리에서 생산된 Extra-cellular 물질에 기인한다고 여겨지며 이러한 부분에 대해서는 향후 심도 있는 연구가 진행되어야 할 것이다.

DeNitrification-DeComposition (DNDC) Improvement through Model Coupling and Sub-model Development Considering Agricultural Land Use and Future Climate Change

  • Min, Hyungi;Hwang, Wonjae;Kim, Min-Suk;Kim, Jeong-Gyu
    • 환경생물
    • /
    • 제35권1호
    • /
    • pp.37-46
    • /
    • 2017
  • Climate change is the biggest concern of the $21^{st}$ century. Greenhouse gas (GHG) emissions from various sectors are attracting attention as a cause of climate change. The DeNitrification-DeComposition (DNDC) model simulates GHG emissions from cropland. To study future GHG emissions using this simulation model, various factors that could change in future need to be considered. Because most problems are from the agricultural sector, DNDC would be unable to solve the factor-changing problem itself. Hence, it is necessary to link DNDC with separate models that simulate each element. Climate change is predicted to cause a variety of environmental disasters in the future, having a significant impact on the agricultural environment. In the process of human adaptation to environmental change, the distribution and management methods of farmland will also change greatly. In this study, we introduce some drawbacks of DNDC in considering future changes, and present other existing models that can rectify the same. We further propose some combinations with models and development sub-models.

철전기분해장치(FNR)에서 단위공정에 따른 질소와 인의 제거 (A Study on Phosphorus and Nitrogen Removal with Unit Operation in the Ferrous Nutrient Removal Process)

  • 김수복;김영규
    • 한국환경보건학회지
    • /
    • 제39권1호
    • /
    • pp.83-89
    • /
    • 2013
  • Objectives: The purpose of this experiment was to illuminate the relationship between the phosphorus removal rate of unit operation and the phosphorus removal rate of phosphorus volume loading in the Ferrous Nutrient Removal process, which consists of an anoxic basin, oxic basin, and iron precipitation apparatus. Methods: This study was conducted in order to improve the effect of nitrogen and phosphorus removal in domestic wastewater using the FNR (Ferrous Nutrient Removal) process which features an iron precipitation reactor in anoxic and oxic basins. The average concentration of TN and TP was analyzed in a pilot plant ($50m^3/day$). Results: The removal rate of T-N and T-P were 66.5% and 92.8%, respectively. The $NH_3-N$ concentration of effluent was 2.62 mg/l with nitrification in the oxic basin even though the influent was 17.7 mg/l. The $NO_3$-N concentration of effluent was 5.83 mg/l through nitrification in oxic basin even though the influent and anoxic basin were 0.82 mg/l and 1.00 mg/l, respectively. The specific nitrification of the oxic basin ($mg.NH_3$-Nremoved/gMLVSSd) was 16.5 and specific de-nitrification ($mg.NO_3$-Nremoved/gMLVSSd) was 90.8. The T-P removal rate was higher in the oxic basin as T-P of influent was consumed at a rate of 56.3% in the anoxic basin but at 90.3% in the oxic basin. The TP removal rate (mg.TP/g.MLSS.d) ranged from 2.01 to 4.67 (3.06) as the volume loading of T-P was increased, Conclusions: The test results showed that the electrolysis of iron is an effective method of phosphorus removal. Regardless of the temperature and organic matter content of the influent, the quality of phosphorus in the treated water was both relatively stable and high due to the high removal efficiency. Nitrogen removal efficiency was 66.5% because organic matter from the influent serves as a carbon source in the anoxic basin.

Multi-Bioindicators to Assess Soil Microbial Activity in the Context of an Artificial Groundwater Recharge with Treated Wastewater: A Large-Scale Pilot Experiment

  • Michel, Caroline;Joulian, Catherine;Ollivier, Patrick;Nyteij, Audrey;Cote, Remi;Surdyk, Nicolas;Hellal, Jennifer;Casanova, Joel;Besnard, Katia;Rampnoux, Nicolas;Garrido, Francis
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권6호
    • /
    • pp.843-853
    • /
    • 2014
  • In the context of artificial groundwater recharge, a reactive soil column at pilot-scale (4.5 m depth and 3 m in diameter) fed by treated wastewater was designed to evaluate soil filtration ability. Here, as a part of this project, the impact of treated wastewater filtration on soil bacterial communities and the soil's biological ability for wastewater treatment as well as the relevance of the use of multi-bioindicators were studied as a function of depth and time. Biomass; bacterial 16S rRNA gene diversity fingerprints; potential nitrifying, denitrifying, and sulfate-reducing activities; and functional gene (amo, nir, nar, and dsr) detection were analyzed to highlight the real and potential microbial activity and diversity within the soil column. These bioindicators show that topsoil (0 to 20 cm depth) was the more active and the more impacted by treated wastewater filtration. Nitrification was the main activity in the pilot. No sulfate-reducing activity or dsr genes were detected during the first 6 months of wastewater application. Denitrification was also absent, but genes of denitrifying bacteria were detected, suggesting that the denitrifying process may occur rapidly if adequate chemical conditions are favored within the soil column. Results also underline that a dry period (20 days without any wastewater supply) significantly impacted soil bacterial diversity, leading to a decrease of enzyme activities and biomass. Finally, our work shows that treated wastewater filtration leads to a modification of the bacterial genetic and functional structures in topsoil.

우리나라 16개 지자체 벼논에서 DNDC 모델을 이용한 온실가스 배출량 평가 (Evaluation of Greenhouse Gas Emissions using DNDC Model from Paddy Fields of 16 Local Government Levels)

  • 정현철;이종식;최은정;김건엽;서상욱;소규호
    • 한국기후변화학회지
    • /
    • 제5권4호
    • /
    • pp.359-366
    • /
    • 2014
  • This research was conducted to estimate methane emission from paddy field of 16 local government levels using the DNDC(DeNitrification-DeComposition) model from 1990 to 2010. Four treatments used in DNDC model for methane emission calculations were (1) midseason drainage with rice straw, (2) midseason drainage without rice straw, (3) continuous flooding with rice straw, and (4) continuous flooding without rice straw. Methane emissions at continuous flooding with rice straw were the highest ($471kg\;C\;ha^{-1}$) while were the lowest ($187kg\;C\;ha^{-1}$) at midseason drainage without rice straw. The average methane emission for 21 years was the highest ($1,406Gg\;CO_{2-eq}$.) in Jeonnam province because of its large cultivation area. Jeju province had the highest the average methane emission per unit area due to the organic content in soil.