• 제목/요약/키워드: De novo lipogenesis

검색결과 13건 처리시간 0.02초

Dietary carnosic acid suppresses hepatic steatosis formation via regulation of hepatic fatty acid metabolism in high-fat diet-fed mice

  • Park, Mi-Young;Mun, Seong Taek
    • Nutrition Research and Practice
    • /
    • 제7권4호
    • /
    • pp.294-301
    • /
    • 2013
  • In this study, we examined the hepatic anti-steatosis activity of carnosic acid (CA), a phenolic compound of rosemary (Rosmarinus officinalis) leaves, as well as its possible mechanism of action, in a high-fat diet (HFD)-fed mice model. Mice were fed a HFD, or a HFD supplemented with 0.01% (w/w) CA or 0.02% (w/w) CA, for a period of 12 weeks, after which changes in body weight, blood lipid profiles, and fatty acid mechanism markers were evaluated. The 0.02% (w/w) CA diet resulted in a marked decline in steatosis grade, as well as in homeostasis model assessment of insulin resistance (HOMA-IR) index values, intraperitoneal glucose tolerance test (IGTT) results, body weight gain, liver weight, and blood lipid levels (P < 0.05). The expression level of hepatic lipogenic genes, such as sterol regulating element binding protein-1c (SREBP-1c), liver-fatty acid binding protein (L-FABP), stearoyl-CoA desaturase 1 (SCD1), and fatty acid synthase (FAS), was significantly lower in mice fed 0.01% (w/w) CA and 0.02% (w/w) CA diets than that in the HFD group; on the other hand, the expression level of ${\beta}$-oxidation-related genes, such as peroxisome proliferator-activated receptor ${\alpha}$ (PPAR-${\alpha}$), carnitine palmitoyltransferase 1 (CPT-1), and acyl-CoA oxidase (ACO), was higher in mice fed a 0.02% (w/w) CA diet, than that in the HFD group (P < 0.05). In addition, the hepatic content of palmitic acid (C16:0), palmitoleic acid (C16:1), and oleic acid (C18:1) was significantly lower in mice fed the 0.02% (w/w) CA diet than that in the HFD group (P < 0.05). These results suggest that orally administered CA suppressed HFD-induced hepatic steatosis and fatty liver-related metabolic disorders through decrease of de novo lipogenesis and fatty acid elongation and increase of fatty acid ${\beta}$-oxidation in mice.

6-O-Galloylsalidroside, an Active Ingredient from Acer tegmentosum, Ameliorates Alcoholic Steatosis and Liver Injury in a Mouse Model of Chronic Ethanol Consumption

  • Kim, Young Han;Woo, Dong-Cheol;Ra, Moonjin;Jung, Sangmi;Kim, Ki Hyun;Lee, Yongjun
    • Natural Product Sciences
    • /
    • 제27권3호
    • /
    • pp.201-207
    • /
    • 2021
  • We have previously reported that Acer tegmentosum extract, which is traditionally used in Korea to reduce alcohol-related liver injury, suppresses liver inflammation caused by excessive alcohol consumption and might improve metabolism. The active ingredient, 6-O-galloylsalidroside (GAL), was isolated from A. tegmentosum, and we hypothesized that GAL could provide desirable pharmacological benefits by ameliorating physiological conditions caused by alcohol abuse. Therefore, this study focused on whether GAL could ameliorate alcoholic fat accumulation and repair liver injury in mice. During chronic alcohol consumption plus binge feeding in mice, GAL was administered orally once per day for 11 days. Intrahepatic lipid accumulation was measured in vivo using a noninvasive method, 1H magnetic resonance imaging, and confirmed by staining with hematoxylin and eosin and Oil Red O. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured using a Konelab system, and the triglyceride content was measured in liver homogenates using an enzymatic peroxide assay. The results suggested that GAL alleviated alcohol-induced steatosis,e as indicated by decreased hepatic and serum triglyceride levels in ethanol-fed mice. GAL treatment also correlated with a decrease in the Cd36 mRNA expression, thus potentially inhibiting the development of alcoholic steatosis via the hepatic de novo lipogenesis pathway. Furthermore, treatment with GAL inhibited the expression of cytochrome P450 2E1 and attenuated hepatocellular damage, as reflected by a reduction in ALT and AST levels. These findings suggest that GAL extracted from A. tegmentosum has the potential to serve as a bioactive agent for the treatment of alcoholic fatty liver and liver damage.

Association of the thyroid hormone responsive spot 14 alpha gene with growth-related traits in Korean native chicken

  • Cahyadi, Muhammad;Park, Hee-Bok;Seo, Dong Won;Jin, Shil;Choi, Nuri;Heo, Kang Nyeong;Kang, Bo Seok;Jo, Cheorun;Lee, Jun Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권11호
    • /
    • pp.1755-1762
    • /
    • 2020
  • Objective: Thyroid hormone responsive spot 14 alpha (THRSP) has been used to investigate the regulation of de novo lipogenesis because the variation of THRSP mRNA content in the tissue affects directly the ability of that tissue to synthetize lipids. Also, this gene responds to thyroid hormone stimulation and high level of carbohydrate feeding or insulin-injection. This study was carried out to investigate variations within THRSP and their effects on body and carcass weights in Korean native chicken (KNC). Methods: A total of 585 chickens which represent the five lines of KNC (Black, Gray-Brown, Red-Brown, White, and Yellow-Brown) were reared and body weight data were recorded every two weeks from hatch until 20 weeks of age. Polymerase chain reaction- restriction fragment length polymorphism, DNA chips for Agilent 2100 Bioanalyzer, and Fluidigm Genotyping Technology, were applied to genotype selected markers. A linear mixed-effect model was used to access association between these single nucleotide polymorphism (SNP) markers and growth-related traits. Results: A total of 30 polymorphisms were investigated in THRSP. Of these, nine SNPs for loci were selected to perform association analyses. Significant associations were detected between g.-49G>T SNP with body weight at 20 weeks of age (BW20), g.451T>C SNP with growth at 10 to 12 weeks of age (GR10-12), and g.1432A>C SNP with growth at 14 to 16 weeks trait (GR14-16) and body weight at 18 weeks of age (BW18). Moreover, diplotype of the THRSP gene significantly affected body weight at 12 weeks of age (BW12) and GR10-12 traits. Diplotype of ht1/ht2 was favorable for BW12 and GR10-12 traits. Conclusion: These results suggest that THRSP can be regarded as a candidate gene for growth traits in KNC.