Association of the thyroid hormone responsive spot 14 alpha gene with growth-related traits in Korean native chicken |
Cahyadi, Muhammad
(Department of Animal Science, Faculty of Agriculture, Universitas Sebelas Maret)
Park, Hee-Bok (Department of Animal Resources Science, Kongju National University) Seo, Dong Won (Department of Animal and Dairy Science, College of Agriculture and Life Sciences, Chungnam National University) Jin, Shil (Department of Animal and Dairy Science, College of Agriculture and Life Sciences, Chungnam National University) Choi, Nuri (Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University) Heo, Kang Nyeong (Poultry Research Institute, National Institute of Animal Science, RDA) Kang, Bo Seok (Poultry Research Institute, National Institute of Animal Science, RDA) Jo, Cheorun (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University) Lee, Jun Heon (Department of Animal and Dairy Science, College of Agriculture and Life Sciences, Chungnam National University) |
1 | Cahyadi M, Seo DW, Jin S, et al. Association of SNPs in ODC and PRDM16 with body weight traits in Korean native chicken. Korean J Poult Sci 2013;40:157-62. https://doi.org/10.5536/KJPS.2013.40.2.157 DOI |
2 | Seo DW, Hoque MR, Choi NR, et al. Discrimination of Korean native chicken lines using fifteen selected microsatellite markers. Asian-Australas J Anim Sci 2013;26:316-22. https://doi.org/10.5713/ajas.2012.12469 DOI |
3 | Sang BD, Hong SK, Kim HK, et al. Estimation of genetic parameters for economic traits in Korean native chickens. Asian-Australas J Anim Sci 2006;19:319-23. https://doi.org/10.5713/ajas.2006.319 DOI |
4 | Hoque MR, Lee SH, Jung KC, et al. Discrimination of Korean native chicken populations using SNPs from mtDNA and MHC polymorphisms. Asian-Australas J Anim Sci 2011;24:1637-43. https://doi.org/10.5713/ajas.2011.11144 DOI |
5 | Manjula P, Park HB, Seo D, et al. Estimation of heritability and genetic correlation of body weight gain and growth curve parameters in Korean native chicken. Asian-Australas J Anim Sci 2018;31:26-31. https://doi.org/10.5713/ajas.17.0179 DOI |
6 | Cahyadi M, Jo C, Lee JH. Quantitative trait loci and candidate genes for the economic traits in meat-type chicken. Worlds Poult Sci J 2014;70:329-42. https://doi.org/10.1017/S0043933914000348 DOI |
7 | Spencer GSG. Hormonal systems regulating growth. A review. Livest Prod Sci 1985;12:31-46. https://doi.org/10.1016/0301-6226(85)90038-7 DOI |
8 | Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998;395:763-70. https://doi.org/10.1038/27376 DOI |
9 | Barsh GS, Farooqi IS, O'Rahilly S. Genetics of body-weight regulation. Nature 2000;404:644-51. https://doi.org/10.1038/35007519 https://doi.org/10.1038/35007519 DOI |
10 | Schutz Y. Dietary fat, lipogenesis and energy balance. Physiol Behav 2004;83:557-64. https://doi.org/10.1016/j.physbeh.2004.09.015 DOI |
11 | Fall T, Ingelsson E. Genome-wide association studies of obesity and metabolic syndrome. Mol Cell Endocrinol 2014;382:740-57. https://doi.org/10.1016/j.mce.2012.08.018 DOI |
12 | Seelig S, Liaw C, Towle HC, Oppenheimer JH. Thyroid hormone attenuates and augments hepatic gene expression at a pretranslational level. Proc Natl Acad Sci USA 1981;78:4733-7. https://doi.org/10.1073/pnas.78.8.4733 DOI |
13 | Khan A, Fornes O, Stigliani A, et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res 2018;46: D260-6. https://doi.org/10.1093/nar/gkx1126 DOI |
14 | Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988;16:1215. https://doi.org/10.1093/nar/16.3.1215 DOI |
15 | Falconer DS, Mackay TFC. Introduction to quantitative genetics. 4th ed. Harlow, UK: Addison-Wesley Longman; 1996. |
16 | Bailey TL, Boden M, Buske FA, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009;37: W202-8. https://doi.org/10.1093/nar/gkp335 DOI |
17 | Chagnon YC, Perusse L, Bouchard C. The human obesity gene map: the 1997 update. Obes Res 1998;6:76-92. https://doi.org/10.1002/j.1550-8528.1998.tb00318.x DOI |
18 | Kinlaw WB, Church JL, Harmon J, Mariash CN. Direct evidence for a role of the "spot14" protein in the regulation of lipid synthesis. J Biol Chem 1995;270:16615-8. https://doi.org/10.1074/jbc.270.28.16615 DOI |
19 | Jump DB, Narayan P, Towle H, Oppenheimer JH. Rapid effects of triiodothyronine on hepatic gene expression: Hybridization analysis of tissue-specific triiodothyronine regulation of mRNAS14. J Biol Chem 1984;259:2789-97. DOI |
20 | Wang X, Carre W, Zhou H, Lamont SJ, Cogburn LA. Duplicated Spot 14 genes in the chicken: characterization and identification of polymorphisms associated with abdominal fat traits. Gene 2004;332:79-88. https://doi.org/10.1016/j.gene.2004.02.021 DOI |
21 | Donnelly C, Olsen AM, Lewis LD, Eisenberg BL, Eastman A, Kinlaw WB. Conjugated linoleic acid (CLA) inhibits expression of the Spot 14 (THRSP) and fatty acid synthase genes and impairs the growth of human breast cancer and liposarcoma cells. Nutr Cancer 2008;61:114-22. http://dx.doi.org/10.1080/01635580802348666 DOI |
22 | Cogburn LA, Wang X, Carre W, et al. Systems-wide chicken DNA microarrays, gene expression profiling, and discovery of functional genes. Poult Sci 2003;82:939-51. https://doi.org/10.1093/ps/82.6.939 DOI |
23 | Carre W, Diot C, Fillon V, et al. Development of 112 unique expressed sequence tags from chicken liver using an arbitrarily primed reverse transcriptase-polymerase chain reaction and single strand conformation gel purification method. Anim Genet 2001;32:289-97. https://doi.org/10.1046/j.1365-2052.2001.00792.x DOI |
24 | Ikeobi CON, Woolliams JA, Morrice DR, et al. Quantitative trait loci affecting fatness in the chicken. Anim Genet 2002; 33:428-35. https://doi.org/10.1046/j.1365-2052.2002.00911.x DOI |
25 | d'Andre Hirwa C, Yan W, Wallace P, et al. Effects of the thyroid hormone responsive gene on chicken growth and fat traits. Poult Sci 2010;89:1981-91. https://doi.org/10.3382/ps.2009-00582 DOI |
26 | Lagarrigue S, Pitel F, Carre W, et al. Mapping quantitative trait loci affecting fatness and breast muscle weight in meat-type chicken lines divergently selected on abdominal fatness. Genet Sel Evol 2006;38:85. https://doi.org/10.1186/1297-9686-38-1-85 DOI |
27 | Ankra-Badu GA, Shriner D, Le Bihan-Duval E, et al. Mapping main, epistatic and sex-specific QTL for body composition in a chicken population divergently selected for low or high growth rate. BMC Genomics 2010;11:107. https://doi.org/10.1186/1471-2164-11-107 DOI |
28 | Cao ZP, Wang SZ, Wang QG, Wang YX, Li H. Association of spot14 alpha gene polymorphisms with body weight in the chicken. Poult Sci 2007;86:1873-80. https://doi.org/10.1093/ps/86.9.1873 DOI |
29 | Hoque MR, Lee SW, Lee JH. DNA markers in chicken for breed discrimination. CNU J Agric Sci 2012;39:211-7. https://doi.org/10.7744/cnujas.2012.39.2.211 |
30 | Cahyadi M, Park HB, Seo DW, et al. Variance component quantitative trait locus analysis for body weight traits in purebred Korean native chicken. Asian-Australas J Anim Sci 2016;29:43-50. https://doi.org/10.5713/ajas.15.0193 DOI |