• Title/Summary/Keyword: Days to 85% germination rate

Search Result 35, Processing Time 0.02 seconds

Physiological and Ecological Studies on the Low Temperature Damages of Rice (Oryza sativia L.) (수도의 저온장해에 관한 생리 생태학적 연구)

  • 오윤진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.1
    • /
    • pp.1-31
    • /
    • 1981
  • Experiments were conducted to investigate rice varietal response to low water and air temperatures at different growth stages from 1975 to 1980 in a phytotron in Suweon and in a cold water nursery in Chooncheon. Germination ability, seedling growth, sterility of laspikelets, panicle exertion, discoloration of leaves, and delay of heading of recently developed indica/japonica cross(I/J), japonica, and indica varieties at low air temperature or cold water were compared to those at normal temperature or natural conditions. The results are summarized as follows: 1. Practically acceptable germination rate of 70% was obtained in 10 days after initiation of germination test at 15\circ_C for japonica varieties, but 15 days for IxJ varieties. Varietal differences in germination ability at suboptimal temperature was greatest at 16\circ_C for 6 days. 2. Cold injury of rice seedlings was most severe at the 3.0-and 3.5-leaf stage and it was reduced as growth stage advanced. A significant positive correlation was observed between cold injury at 3-leaf stage and 6-leaf stage. 3. At day/night temperatures of 15/10\circ_C seedlings of both japonica and I/J varieties were dead in 42 days. At 20/15\circ_C japonica varieties produced tillers actively, but tillering of I/J varieties was retarded a little. At 25/15\circ_C, both japonica and I/J varieties produced tillers most actively. Increase in plant height was proportional to the increase in all varieties. 4. In I/J varieties the number of differentiated panicle rachis branches and spikelets was reduced at a day-night temperature of 20-15\circ_C compared to 25-20 or 30-25\circ_C, but not in japonica varieties although panicle exertion was retarded at 20-15\circ_C. The number of spikelets was not correlated with the number of primary rachis branches, but positively correlated with that of secondary rachis branches. 5. Heading of rice varieties treated with 15\circ_C air temperature at meiotic stage was delayed compared to that at tillering stage by 1-3 days and heading was delayed as duration of low temperature treatment increased. 6. At cold water treatment of 17\circ_C from tillering to heading stage, heading of japonica, I/J, and cold tolerant indica varieties was delayed 2-6, 3-9, and 4-5 days, respectively, Growth stage sensitive to delay of heading delay at water treatment were tillering stage, meiotic stage, and booting tage in that order, delay of heading was greater in indica corssed japonica(Suweon 264), japonica(Suweon 235), and cold tolerant indica(Lengkwang) varieties in that order. Delay of heading due to cold water treatment was positively correlated with culm length reduction and spikelet sterility. 7. Elongation of culms and exertion of panicles of rice varieties treated with low air temperature 17\circ_C. Culm length reduction rate of tall varieties was lower than that of short statured varieties at low temperature. Panicle exertion was most severaly retarded with low temperature treatment at heading stage. Generally, retardation of panicle exertion of 1/1 varieties was more severe than that of japonica varieties at low temperature. There was a positive correlation between panicle exertion and culm length at low temperature. 8. The number of panicles was increased with cold water treatment at tillering stage, but reduced at meiotic stage. As time of cold water treatment was conducted at earlier growth stage, culm length was shorter and panicle exertion poorer. 9. Sterility of all rice varieties was negligible at 17\circ_C for three days but 30.3-85.2% of strility was observed for nine-day treatment at 17\circ_C. Among the tested varieties, sterility of Suweon 264 and Milyang 42 was highest and that of Suweon 290 and Suweon 287 was lowest. The most sensitive growth stage to low temperature induced sterility was from 15 to 5 days before heading. There was positive correlation between sterility of rice plants treated with low temperature at meiotic and heading stage. 10. Percentage of spikelet sterility was greatest at cold water treatment at meiotic stage (auricle distance -15~-10cm) and it was higher in 1/1 (Suweon 264, Joseng tongil), japonica (Nongbaek, Towada), and cold tolerance indica(Lengkwang) varieties in the order. Level of cold water and position of young-ear affected on the sterility of varieties at meiotic stage; percentage of spikelet sterility of variety, Lengkwang, of which young-ear was located above the cold water level was high, but that of short statured variety, Suweon 264, of which young-ear was located in the cold water was lower. 11. Percentage of ripened grains was not reducted at 15\circ_C air temperature for three days at full heading stage in all varieties. However, at six-day low temperature treatment Suweon 287, Suweon 264 showed percentage of ripended grains lower than 60%, but at nine-day low temperature treatment all varieties showed percentage of ripened grains lower than 60%. Low temperature treatment of 17\circ_C from 10 days after heading for 20 days did not affect on the ripening of all varieties. 12. Uptake of nitrogen, phosphorous, potassium, calcium, and magnesium in whole plants was higher at average air temperature of 25\circ_C, but concentration of the elements was lower compared to those at 19\circ_C. However, both total uptake and concentration of manganese were higher at 19\circ_C compared to 25\circ_C. 13. Higher application of nitrogen, phosphorus, silicate, and compost increased yield of rice due to increased number of panicles and spike let fertility in cold water irrigated paddy.

  • PDF

An Optimum Summer Cultivation Sowing Date for Seed Production of Oats (Avena sativa L.) (귀리 종자 생산을 위한 여름 재배의 적정 파종 시기 구명)

  • Park, Jin-Cheon;Kim, Yang-Kil;Yoon, Young-Mi;Choi, Su-Yeon;Park, Jong-Ho;Park, Hyoung-Ho;Ra, Kyungyoon;Park, Tae-Il
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.3
    • /
    • pp.180-188
    • /
    • 2022
  • This study was conducted to determine the optimal sowing date for seed yield of summer oat (Avena sativa L.) cultivars "Darkhorse (DH)" and "Highspeed (HS)" in Wanju, Jeonbuk province between 2017 and 2018. We investigated seed yield from 4 sowing dates: July 15, July 30, August 15, and August 30. We evaluated the agronomic characteristics of summer oats (DH and HS). We found the heading date of all cultivars to be within 50 days. Delayed sowing resulted in significantly increased plant height for both years and cultivars. There was no significant difference in spike length of DH and HS which ranged from 12.8 to 17.8 cm. The sowing date of July 30 produced a higher number of grains per spike, but this yield differed significantly by year and cultivars. In 2017, the first sowing resulted in the lowest DH yield at 132 kg per 10a, while the second sowing had the highest yield at 227 kg. HS yield was the lowest in the first sowing at 126 kg and the highest in the third sowing at 219 kg. In 2018, DH had the lowest yield from the first sowing at 184 kg per 10a, and the highest from the second sowing at 240 kg, but there was no significant difference between these yields. The first sowing for HS gave the lowest yield at 160 kg, and the second sowing produced the highest at 258 kg. The germination rate of harvested seeds from each sowing date in 2017 and 2018 was found to be higher than 85% and there was no significant difference between the two cultivars in the 2018 germination rate test. Thus, we found the optimal sowing date for summer cultivation of oats for the highest seed yield to be between July 30 (second sowing) and August 15 (third sowing).

Studies on the Seed Production of Festuca arundinacea Schreb I. Effect of nitrogen Fertilization level and method of its application on the seed production of level and method of its application on the seed production of Festuca arundinacea (톨 페스큐의 종자생산에 관한 연구. I. 질소비료의 시비수준 및 분시방법이 톨 페스큐 ( Festuca arundinacea S. ) 의 종자생산에 미치는 영향)

  • 박근제;권두종;이종열;양종성
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.2
    • /
    • pp.100-105
    • /
    • 1985
  • To find out the optimum level of nitrogen fertilization and better distribution of application time for seed production of Festuca arundianacea S. (var. Alta), this filed experiment was performed at Livestock Experiment Station in Suweon, during 1979 to 1981. The treatments used in this study were three nitrogen fertilizing levels (120, 180 and 240kg/ha) and four different methods of nitrogen distribution (i. single application of whole amount in early Spring, ii. 50 percent each in Autumn and early Spring, iii. 50 percent each in early Spring and at begin of heading stage and iv. 50 percent in Autumn and 25 percent in early Spring and at begin of heading stage respectively). The experiment was arranged as a split-plot design with 4 replications and performed at the experimental field of the Livestock Experiment Station in Suweon, during 1979 to 1981. The results obtained are summarized as follows: 1. Date of heading stage of Festuca arundinacea was about May 21 and that of flowering stage was June 1 to 3. The optimum stage for the seed harvesting of Festuca arundinacea (var. Alta) was June 25 about 22 to 23 days after full flowering stage. Average plant height was about 127cm and the panicle length, 24cm. 2. 1000 grain weight was 2.72g and the number of panicles were 85 to 107 per square meter. 3. The mean seed wield for two years was 678.8kg/ha with the average of whole treatments and 781.9kg/ha with the best treatment (50 percent in Autumn and 25 percent in early Spring and at begin of heading stage with 240kg/ha respectively). 4. The average germination rate of harvesting seeds was 87.0 percent and it was increasing trend according to frequent application of fertilizer. 5. The average DM yield of aftermath seed harvesting was 6155kg/ha with two cut, and it was the largest DM yield from the higher nitrogen level and also from the single application in early Spring.

  • PDF

Assays of Maturity and Antifungal Activity against Plant Pathogen during the Animal Manure Composting Process (가축분 퇴비화 과정에서 부숙도 및 퇴비의 항균활성 검정)

  • Seo, Myung-Chul;So, Kyu-Ho;Park, Won-Mok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.285-294
    • /
    • 1999
  • Changes of chemico-physical properties and mturitiy during pig manure composting were analysed using three kinds of bulking agents with rice hull(T1), rice hull and extruding hull mixture (T2, 1:1, v/v), and extruding hull(T3). During composting process, temperature of T1, T2 and T3 were maintained over $50^{\circ}C$ for 31, 21, and 35 days respectively. Organic matter content of each treatment was decreased from 82.2%, 82.0%, and 82.8% to 70.5%, 68.9% and 69.7% and pH increased to 8.85, 9.91, and 8.80, respectively. Total nitrogen content of all treatments gradually decreased, but C/N ratio, phosphorous, and potassium content did not, show any changes during composting process. Both germination rate and early growth were tested using radish seeds for composting maturity. From those results, it was concluded that all treatments were stabilized after 45th day and extruding hull(T3) added compost was superior to others. The test of suppressive effect showed that all treatment have no effect against Fusarium oxysporum, Alternaria altemata, Botrytis cinerea. Compost supplemented with rice hull showed an inhibitory effect after 30th days, while compost supplemented with rice hull and extruding hull(T2) had an inhibitory effect during all period against Rhizoctonia solani. But treatment with extruding hull(T3) added compost did not have any inhibitory effect against Rhizoctonia solani. Only 63th samples in T1 and T2 treatment showed inhibitory effect against Colletoerichum gloeosporioides. However, T3 did not. Suppressive effect of extracts from 67 kinds of composts was investigated in vitro against plant pathogens, such as Fusauum oxysporum. Alternaria alternata, Colletotrichum gloeospoioides, Rhizoctonia solani, and Botrytis cinerea. Thirty two of them showed inhibitory effect against more than one phytopathogen, nine against one pathogen, four against two, six against three, six against four, and seven against five.

  • PDF

Effect of rice seed dressing with imidacloprid WS on early occurring rice insect pests (본답 초기해충의 생력방제를 위한 imidacloprid의 종자분의 효과)

  • Choi, Byung-Ryul;Yoo, Jae-Ki;Lee, Sang-Guei;Lee, Jeong-Oon
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.1
    • /
    • pp.85-90
    • /
    • 1998
  • A series of experiments were carried out to determine the effect of seed dressing application of chemicals on the early occurring rice insect pests. The number of small brown planthopper adults per 3hills in seed-dressing plot of Imidacloprid WS (Im WS) was 1.6 and its control efficacy was over 90%, compared with that of untreated plot. Rice water weevil was observed in the density of 8.8 larvae per 5 hills seed-dressed Im WS plots(showing 95.5% of control efficacy). Control efficacy of Im WS and Im GR against adult weevils lasted for 26 days after treatment and was higher than that of Carbofuran GR. Rates of injured stems by rice stem maggot and injured leaves by rice leaf miner were 3% and 3.7% in Im WS treatment plot respectively. Seed germination rate after seed dressing with recommended dosage (3 g/seed kg) of Im WS was 71 % on the 1st day and increased on 5th day up to that of untreated seed. The residual amount of Im in seed dressing plot was 0.11 ppm in rice roots and 0.05 ppm in leaves on the 40th day after treatment. Residual effect of Im WSI sustained for 50 days with over 95% insecticidal effect for the rice water weevil and over 90% for the brown planthopper. Quantity of the chemical applied in the field was calculated as 0.084 kg a.i./ha in seed dressing and 0.3 kg a.i./ha in seed box treatment, respectively It took 1 hour to treat insecticide by seed dressing, 2.5 hours by seed box applying, and 3.6 hours by water surface releasing per 990 $m^2$.

  • PDF