• Title/Summary/Keyword: Dataset Training

Search Result 668, Processing Time 0.026 seconds

Imbalanced SVM-Based Anomaly Detection Algorithm for Imbalanced Training Datasets

  • Wang, GuiPing;Yang, JianXi;Li, Ren
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.621-631
    • /
    • 2017
  • Abnormal samples are usually difficult to obtain in production systems, resulting in imbalanced training sample sets. Namely, the number of positive samples is far less than the number of negative samples. Traditional Support Vector Machine (SVM)-based anomaly detection algorithms perform poorly for highly imbalanced datasets: the learned classification hyperplane skews toward the positive samples, resulting in a high false-negative rate. This article proposes a new imbalanced SVM (termed ImSVM)-based anomaly detection algorithm, which assigns a different weight for each positive support vector in the decision function. ImSVM adjusts the learned classification hyperplane to make the decision function achieve a maximum GMean measure value on the dataset. The above problem is converted into an unconstrained optimization problem to search the optimal weight vector. Experiments are carried out on both Cloud datasets and Knowledge Discovery and Data Mining datasets to evaluate ImSVM. Highly imbalanced training sample sets are constructed. The experimental results show that ImSVM outperforms over-sampling techniques and several existing imbalanced SVM-based techniques.

A Study on Transferring Cloud Dataset for Smoke Extraction Based on Deep Learning (딥러닝 기반 연기추출을 위한 구름 데이터셋의 전이학습에 대한 연구)

  • Kim, Jiyong;Kwak, Taehong;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.695-706
    • /
    • 2022
  • Medium and high-resolution optical satellites have proven their effectiveness in detecting wildfire areas. However, smoke plumes generated by wildfire scatter visible light incidents on the surface, thereby interrupting accurate monitoring of the area where wildfire occurs. Therefore, a technology to extract smoke in advance is required. Deep learning technology is expected to improve the accuracy of smoke extraction, but the lack of training datasets limits the application. However, for clouds, which have a similar property of scattering visible light, a large amount of training datasets has been accumulated. The purpose of this study is to develop a smoke extraction technique using deep learning, and the limits due to the lack of datasets were overcome by using a cloud dataset on transfer learning. To check the effectiveness of transfer learning, a small-scale smoke extraction training set was made, and the smoke extraction performance was compared before and after applying transfer learning using a public cloud dataset. As a result, not only the performance in the visible light wavelength band was enhanced but also in the near infrared (NIR) and short-wave infrared (SWIR). Through the results of this study, it is expected that the lack of datasets, which is a critical limit for using deep learning on smoke extraction, can be solved, and therefore, through the advancement of smoke extraction technology, it will be possible to present an advantage in monitoring wildfires.

Improving Test Accuracy on the MNIST Dataset using a Simple CNN with Batch Normalization

  • Seungbin Lee;Jungsoo Rhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.1-7
    • /
    • 2024
  • In this paper, we proposes a Convolutional Neural Networks(CNN) equipped with Batch Normalization(BN) for handwritten digit recognition training the MNIST dataset. Aiming to surpass the performance of LeNet-5 by LeCun et al., a 6-layer neural network was designed. The proposed model processes 28×28 pixel images through convolution, Max Pooling, and Fully connected layers, with the batch normalization to improve learning stability and performance. The experiment utilized 60,000 training images and 10,000 test images, applying the Momentum optimization algorithm. The model configuration used 30 filters with a 5×5 filter size, padding 0, stride 1, and ReLU as activation function. The training process was set with a mini-batch size of 100, 20 epochs in total, and a learning rate of 0.1. As a result, the proposed model achieved a test accuracy of 99.22%, surpassing LeNet-5's 99.05%, and recorded an F1-score of 0.9919, demonstrating the model's performance. Moreover, the 6-layer model proposed in this paper emphasizes model efficiency with a simpler structure compared to LeCun et al.'s LeNet-5 (7-layer model) and the model proposed by Ji, Chun and Kim (10-layer model). The results of this study show potential for application in real industrial applications such as AI vision inspection systems. It is expected to be effectively applied in smart factories, particularly in determining the defective status of parts.

A Study on Dataset Generation Method for Korean Language Information Extraction from Generative Large Language Model and Prompt Engineering (생성형 대규모 언어 모델과 프롬프트 엔지니어링을 통한 한국어 텍스트 기반 정보 추출 데이터셋 구축 방법)

  • Jeong Young Sang;Ji Seung Hyun;Kwon Da Rong Sae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.481-492
    • /
    • 2023
  • This study explores how to build a Korean dataset to extract information from text using generative large language models. In modern society, mixed information circulates rapidly, and effectively categorizing and extracting it is crucial to the decision-making process. However, there is still a lack of Korean datasets for training. To overcome this, this study attempts to extract information using text-based zero-shot learning using a generative large language model to build a purposeful Korean dataset. In this study, the language model is instructed to output the desired result through prompt engineering in the form of "system"-"instruction"-"source input"-"output format", and the dataset is built by utilizing the in-context learning characteristics of the language model through input sentences. We validate our approach by comparing the generated dataset with the existing benchmark dataset, and achieve 25.47% higher performance compared to the KLUE-RoBERTa-large model for the relation information extraction task. The results of this study are expected to contribute to AI research by showing the feasibility of extracting knowledge elements from Korean text. Furthermore, this methodology can be utilized for various fields and purposes, and has potential for building various Korean datasets.

Normal data based rotating machine anomaly detection using CNN with self-labeling

  • Bae, Jaewoong;Jung, Wonho;Park, Yong-Hwa
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.757-766
    • /
    • 2022
  • To train deep learning algorithms, a sufficient number of data are required. However, in most engineering systems, the acquisition of fault data is difficult or sometimes not feasible, while normal data are secured. The dearth of data is one of the major challenges to developing deep learning models, and fault diagnosis in particular cannot be made in the absence of fault data. With this context, this paper proposes an anomaly detection methodology for rotating machines using only normal data with self-labeling. Since only normal data are used for anomaly detection, a self-labeling method is used to generate a new labeled dataset. The overall procedure includes the following three steps: (1) transformation of normal data to self-labeled data based on a pretext task, (2) training the convolutional neural networks (CNN), and (3) anomaly detection using defined anomaly score based on the softmax output of the trained CNN. The softmax value of the abnormal sample shows different behavior from the normal softmax values. To verify the proposed method, four case studies were conducted, on the Case Western Reserve University (CWRU) bearing dataset, IEEE PHM 2012 data challenge dataset, PHMAP 2021 data challenge dataset, and laboratory bearing testbed; and the results were compared to those of existing machine learning and deep learning methods. The results showed that the proposed algorithm could detect faults in the bearing testbed and compressor with over 99.7% accuracy. In particular, it was possible to detect not only bearing faults but also structural faults such as unbalance and belt looseness with very high accuracy. Compared with the existing GAN, the autoencoder-based anomaly detection algorithm, the proposed method showed high anomaly detection performance.

Arabic Words Extraction and Character Recognition from Picturesque Image Macros with Enhanced VGG-16 based Model Functionality Using Neural Networks

  • Ayed Ahmad Hamdan Al-Radaideh;Mohd Shafry bin Mohd Rahim;Wad Ghaban;Majdi Bsoul;Shahid Kamal;Naveed Abbas
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1807-1822
    • /
    • 2023
  • Innovation and rapid increased functionality in user friendly smartphones has encouraged shutterbugs to have picturesque image macros while in work environment or during travel. Formal signboards are placed with marketing objectives and are enriched with text for attracting people. Extracting and recognition of the text from natural images is an emerging research issue and needs consideration. When compared to conventional optical character recognition (OCR), the complex background, implicit noise, lighting, and orientation of these scenic text photos make this problem more difficult. Arabic language text scene extraction and recognition adds a number of complications and difficulties. The method described in this paper uses a two-phase methodology to extract Arabic text and word boundaries awareness from scenic images with varying text orientations. The first stage uses a convolution autoencoder, and the second uses Arabic Character Segmentation (ACS), which is followed by traditional two-layer neural networks for recognition. This study presents the way that how can an Arabic training and synthetic dataset be created for exemplify the superimposed text in different scene images. For this purpose a dataset of size 10K of cropped images has been created in the detection phase wherein Arabic text was found and 127k Arabic character dataset for the recognition phase. The phase-1 labels were generated from an Arabic corpus of quotes and sentences, which consists of 15kquotes and sentences. This study ensures that Arabic Word Awareness Region Detection (AWARD) approach with high flexibility in identifying complex Arabic text scene images, such as texts that are arbitrarily oriented, curved, or deformed, is used to detect these texts. Our research after experimentations shows that the system has a 91.8% word segmentation accuracy and a 94.2% character recognition accuracy. We believe in the future that the researchers will excel in the field of image processing while treating text images to improve or reduce noise by processing scene images in any language by enhancing the functionality of VGG-16 based model using Neural Networks.

An AutoML-driven Antenna Performance Prediction Model in the Autonomous Driving Radar Manufacturing Process

  • So-Hyang Bak;Kwanghoon Pio Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3330-3344
    • /
    • 2023
  • This paper proposes an antenna performance prediction model in the autonomous driving radar manufacturing process. Our research work is based upon a challenge dataset, Driving Radar Manufacturing Process Dataset, and a typical AutoML machine learning workflow engine, Pycaret open-source Python library. Note that the dataset contains the total 70 data-items, out of which 54 used as input features and 16 used as output features, and the dataset is properly built into resolving the multi-output regression problem. During the data regression analysis and preprocessing phase, we identified several input features having similar correlations and so detached some of those input features, which may become a serious cause of the multicollinearity problem that affect the overall model performance. In the training phase, we train each of output-feature regression models by using the AutoML approach. Next, we selected the top 5 models showing the higher performances in the AutoML result reports and applied the ensemble method so as for the selected models' performances to be improved. In performing the experimental performance evaluation of the regression prediction model, we particularly used two metrics, MAE and RMSE, and the results of which were 0.6928 and 1.2065, respectively. Additionally, we carried out a series of experiments to verify the proposed model's performance by comparing with other existing models' performances. In conclusion, we enhance accuracy for safer autonomous vehicles, reduces manufacturing costs through AutoML-Pycaret and machine learning ensembled model, and prevents the production of faulty radar systems, conserving resources. Ultimately, the proposed model holds significant promise not only for antenna performance but also for improving manufacturing quality and advancing radar systems in autonomous vehicles.

A Study on the Impact of Speech Data Quality on Speech Recognition Models

  • Yeong-Jin Kim;Hyun-Jong Cha;Ah Reum Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.41-49
    • /
    • 2024
  • Speech recognition technology is continuously advancing and widely used in various fields. In this study, we aimed to investigate the impact of speech data quality on speech recognition models by dividing the dataset into the entire dataset and the top 70% based on Signal-to-Noise Ratio (SNR). Utilizing Seamless M4T and Google Cloud Speech-to-Text, we examined the text transformation results for each model and evaluated them using the Levenshtein Distance. Experimental results revealed that Seamless M4T scored 13.6 in models using data with high SNR, which is lower than the score of 16.6 for the entire dataset. However, Google Cloud Speech-to-Text scored 8.3 on the entire dataset, indicating lower performance than data with high SNR. This suggests that using data with high SNR during the training of a new speech recognition model can have an impact, and Levenshtein Distance can serve as a metric for evaluating speech recognition models.

Training a semantic segmentation model for cracks in the concrete lining of tunnel (터널 콘크리트 라이닝 균열 분석을 위한 의미론적 분할 모델 학습)

  • Ham, Sangwoo;Bae, Soohyeon;Kim, Hwiyoung;Lee, Impyeong;Lee, Gyu-Phil;Kim, Donggyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.549-558
    • /
    • 2021
  • In order to keep infrastructures such as tunnels and underground facilities safe, cracks of concrete lining in tunnel should be detected by regular inspections. Since regular inspections are accomplished through manual efforts using maintenance lift vehicles, it brings about traffic jam, exposes works to dangerous circumstances, and deteriorates consistency of crack inspection data. This study aims to provide methodology to automatically extract cracks from tunnel concrete lining images generated by the existing tunnel image acquisition system. Specifically, we train a deep learning based semantic segmentation model with open dataset, and evaluate its performance with the dataset from the existing tunnel image acquisition system. In particular, we compare the model performance in case of using all of a public dataset, subset of the public dataset which are related to tunnel surfaces, and the tunnel-related subset with negative examples. As a result, the model trained using the tunnel-related subset with negative examples reached the best performance. In the future, we expect that this research can be used for planning efficient model training strategy for crack detection.

Development of Block-based Code Generation and Recommendation Model Using Natural Language Processing Model (자연어 처리 모델을 활용한 블록 코드 생성 및 추천 모델 개발)

  • Jeon, In-seong;Song, Ki-Sang
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.3
    • /
    • pp.197-207
    • /
    • 2022
  • In this paper, we develop a machine learning based block code generation and recommendation model for the purpose of reducing cognitive load of learners during coding education that learns the learner's block that has been made in the block programming environment using natural processing model and fine-tuning and then generates and recommends the selectable blocks for the next step. To develop the model, the training dataset was produced by pre-processing 50 block codes that were on the popular block programming language web site 'Entry'. Also, after dividing the pre-processed blocks into training dataset, verification dataset and test dataset, we developed a model that generates block codes based on LSTM, Seq2Seq, and GPT-2 model. In the results of the performance evaluation of the developed model, GPT-2 showed a higher performance than the LSTM and Seq2Seq model in the BLEU and ROUGE scores which measure sentence similarity. The data results generated through the GPT-2 model, show that the performance was relatively similar in the BLEU and ROUGE scores except for the case where the number of blocks was 1 or 17.