• Title/Summary/Keyword: Database Parameter

Search Result 241, Processing Time 0.026 seconds

Accuracy Simulation Technology for Machine Control Systems (기계장비 제어특성 시뮬레이션 플랫폼 기술)

  • Song, Chang-Kyu;Kim, Byung-Sub;Ro, Seung-Kook;Lee, Sung-Cheul;Min, Byung-Kwon;Jeong, Young-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.292-300
    • /
    • 2011
  • Control systems in machinery equipment provide correction signals to motion units in order to reduce or cancel out the mismatches between sensor feedback signals and command or desired values. In this paper, we introduce a simulator for control characteristics of machinery equipment. The purpose of the simulator development is to provide mechanical system designers with the ability to estimate how much dynamic performance can be achieved from their design parameters and selected devices at the designing phase. The simulator has a database for commercial parts, so that the designers can choose appropriate components for servo controllers, motors, motor drives, and guide ways, etc. and then tune governing parameters such as controller gains and friction coefficients. The simulator simulates the closed-loop control system which is built and parameter-tuned by the designer and shows dynamic responses of the control system. The simulator treats the moving table as a 6 degrees-of-freedom rigid body and considers the motion guide blocks stiffness, damping and their locations as well as sensor locations. The simulator has been under development for one and a half years and has a few years to go before the public release. The primary achievements and features will be presented in this paper.

An Evaluation of Sampling Design for Estimating an Epidemiologic Volume of Diabetes and for Assessing Present Status of Its Control in Korea (우리나라 당뇨병의 역학적 규모와 당뇨병 관리현황 파악을 위한 표본설계의 평가)

  • Lee, Ji-Sung;Kim, Jai-Yong;Baik, Sei-Hyun;Park, Ie-Byung;Lee, June-Young
    • Journal of Preventive Medicine and Public Health
    • /
    • v.42 no.2
    • /
    • pp.135-142
    • /
    • 2009
  • Objectives : An appropriate sampling strategy for estimating an epidemiologic volume of diabetes has been evaluated through a simulation. Methods : We analyzed about 250 million medical insurance claims data submitted to the Health Insurance Review & Assessment Service with diabetes as principal or subsequent diagnoses, more than or equal to once per year, in 2003. The database was re-constructed to a 'patient-hospital profile' that had 3,676,164 cases, and then to a 'patient profile' that consisted of 2,412,082 observations. The patient profile data was then used to test the validity of a proposed sampling frame and methods of sampling to develop diabetic-related epidemiologic indices. Results : Simulation study showed that a use of a stratified two-stage cluster sampling design with a total sample size of 4,000 will provide an estimate of 57.04%(95% prediction range, 49.83 - 64.24%) for a treatment prescription rate of diabetes. The proposed sampling design consists, at first, stratifying the area of the nation into "metropolitan/city/county" and the types of hospital into "tertiary/secondary/primary/clinic" with a proportion of 5:10:10:75. Hospitals were then randomly selected within the strata as a primary sampling unit, followed by a random selection of patients within the hospitals as a secondly sampling unit. The difference between the estimate and the parameter value was projected to be less than 0.3%. Conclusions : The sampling scheme proposed will be applied to a subsequent nationwide field survey not only for estimating the epidemiologic volume of diabetes but also for assessing the present status of nationwide diabetes control.

Tolerance Computation for Process Parameter Considering Loss Cost : In Case of the Larger is better Characteristics (손실 비용을 고려한 공정 파라미터 허용차 산출 : 망대 특성치의 경우)

  • Kim, Yong-Jun;Kim, Geun-Sik;Park, Hyung-Geun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.129-136
    • /
    • 2017
  • Among the information technology and automation that have rapidly developed in the manufacturing industries recently, tens of thousands of quality variables are estimated and categorized in database every day. The former existing statistical methods, or variable selection and interpretation by experts, place limits on proper judgment. Accordingly, various data mining methods, including decision tree analysis, have been developed in recent years. Cart and C5.0 are representative algorithms for decision tree analysis, but these algorithms have limits in defining the tolerance of continuous explanatory variables. Also, target variables are restricted by the information that indicates only the quality of the products like the rate of defective products. Therefore it is essential to develop an algorithm that improves upon Cart and C5.0 and allows access to new quality information such as loss cost. In this study, a new algorithm was developed not only to find the major variables which minimize the target variable, loss cost, but also to overcome the limits of Cart and C5.0. The new algorithm is one that defines tolerance of variables systematically by adopting 3 categories of the continuous explanatory variables. The characteristics of larger-the-better was presumed in the environment of programming R to compare the performance among the new algorithm and existing ones, and 10 simulations were performed with 1,000 data sets for each variable. The performance of the new algorithm was verified through a mean test of loss cost. As a result of the verification show, the new algorithm found that the tolerance of continuous explanatory variables lowered loss cost more than existing ones in the larger is better characteristics. In a conclusion, the new algorithm could be used to find the tolerance of continuous explanatory variables to minimize the loss in the process taking into account the loss cost of the products.

Natural Image Segmentation Considering The Cyclic Property Of Hue Component (색상의 주기성을 고려한 자연영상 분할방법)

  • Nam, Hye-Young;Kim, Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.16-25
    • /
    • 2009
  • In this paper we propose the block based image segmentation method using the cyclic properties of hue components in HSI color model. In proposed method we use center point instead of hue mean values as the hue representatives for regions in image segmentation considering hue cyclic properties and we also use directed distance for the hue difference among regions. Furthermore we devise the simple and effective method to get critical values through control parameter to reduce the complexity in the calculation of those in the conventional method. From the experimental results we found that the segmented regions in the proposed method is more natural than those in the conventional method especially in texture and red tone regions. In the simulation results the proposed method is better than the conventional methods in the in the evaluation of the human segmentation dataset presented Berkely Segmentation Database.

Noise Modeling for CR Images of High-strength Materials (고강도매질 CR 영상의 잡음 모델링)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.95-102
    • /
    • 2008
  • This paper presents an appropriate approach for modeling noise in Computed Radiography(CR) images of high strength materials. The approach is specifically designed for types of noise with the statistical and nonlinear properties. CR images Ere degraded even before they are encoded by computer process. Various types of noise often contribute to contaminate radiography image, although they are detected on digitalization. Quantum noise, which is Poisson distributed, is a shot noise, but the photon distribution on Image Plate(IP) of CR system is not always Poisson process. The statistical properties are relative and case-dependant due to its material characteristics. The usual assumption of a distribution of Poisson, binomial and Gaussian statistics are considered. Nonlinear effect is also represented in the process of statistical noise model. It leads to estimate the noise variance in regions from high to low intensity, specifying analytical model. The analysis approach is tested on a database of steel tube step-wedge CR images. The results are available for the comparative parameter studies which measure noise coherence, distribution, signal/noise ratios(SNR) and nonlinear interpolation.

Dynamic Modeling of Autonomous Underwater Vehicle for Underwater Surveillance and Parameter Tuning with Experiments (수중정찰용 자율무인잠수정의 운동 모델링 및 시험을 통한 계수 조정)

  • Lee, Phil-Yeop;Park, Sung-Kook;Kwon, Soon Tae;Park, Sangwoong;Jung, Hunsang;Park, Min-Soo;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.488-498
    • /
    • 2015
  • This paper presents the dynamic model of an AUV called HW200 for underwater surveillance. The mathematical model of HW200 is briefly introduced, considering its shape. The maneuvering coefficients were initially estimated using empirical formulas and a database of vehicles with similar shapes. A motion simulator, based on Simulink of Mathworks, was developed to evaluate the mathematical model of the vehicle and to tune the maneuvering coefficients. The parameters were finely tuned by comparing the experimental results and simulated responses generated with the simulator by applying the same control inputs as the experiment. The velocity of HW200 in the tuning process was fixed at a constant forward speed of 1.83 m/s. Simulations with variable speed commands were conducted, and the results showed good consistency in the motion response, attitude, and velocity of the vehicle, which were similar to those of the experiment even under the speed variation. This paper also discusses the feasibility of its application to a model-based integrated navigation system (INS) using the auxiliary information on the velocities generated by the model.

Development and implementation of statistical prediction procedure for field penetration index using ridge regression with best subset selection (최상부분집합이 고려된 능형회귀를 적용한 현장관입지수에 대한 통계적 예측기법 개발 및 적용)

  • Lee, Hang-Lo;Song, Ki-Il;Kim, Kyoung Yul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.857-870
    • /
    • 2017
  • The use of shield TBM is gradually increasing due to the urbanization of social infrastructures. Reliable estimation of advance rate is very important for accurate construction period and cost. For this purpose, it is required to develop the prediction model of advance rate that can consider the ground properties reasonably. Based on the database collected from field, statistical prediction procedure for field penetration index (FPI) was modularized in this study to calculate penetration rate of shield TBM. As output parameter, FPI was selected and various systems were included in this module such as, procedure of eliminating abnormal dataset, preprocessing of dataset and ridge regression with best subset selection. And it was finally validated by using field dataset.

Speech Recognition Performance Improvement using a convergence of GMM Phoneme Unit Parameter and Vocabulary Clustering (GMM 음소 단위 파라미터와 어휘 클러스터링을 융합한 음성 인식 성능 향상)

  • Oh, SangYeob
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.35-39
    • /
    • 2020
  • DNN error is small compared to the conventional speech recognition system, DNN is difficult to parallel training, often the amount of calculations, and requires a large amount of data obtained. In this paper, we generate a phoneme unit to estimate the GMM parameters with each phoneme model parameters from the GMM to solve the problem efficiently. And it suggests ways to improve performance through clustering for a specific vocabulary to effectively apply them. To this end, using three types of word speech database was to have a DB build vocabulary model, the noise processing to extract feature with Warner filters were used in the speech recognition experiments. Results using the proposed method showed a 97.9% recognition rate in speech recognition. In this paper, additional studies are needed to improve the problems of improved over fitting.

A Study on the Speaker Adaptation in CDHMM (CDHMM의 화자적응에 관한 연구)

  • Kim, Gwang-Tae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.116-127
    • /
    • 2002
  • A new approach to improve the speaker adaptation algorithm by means of the variable number of observation density functions for CDHMM speech recognizer has been proposed. The proposed method uses the observation density function with more than one mixture in each state to represent speech characteristics in detail. The number of mixtures in each state is determined by the number of frames and the determinant of the variance, respectively. The each MAP Parameter is extracted in every mixture determined by these two methods. In addition, the state segmentation method requiring speaker adaptation can segment the adapting speech more Precisely by using speaker-independent model trained from sufficient database as a priori knowledge. And the state duration distribution is used lot adapting the speech duration information owing to speaker's utterance habit and speed. The recognition rate of the proposed methods are significantly higher than that of the conventional method using one mixture in each state.

중성자 조사 및 열처리에 따른 SA508 C1.3강의 자기특성 변화

  • 장기옥;김택수;심철무;지세환;김종오
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.5
    • /
    • pp.249-254
    • /
    • 1998
  • In relation to the application of magnetic method to the evaluation of irradiation damage (embrittlement) changes in the magnetic parameters(hysteresis loop and Barkhausen noise) and Vickers microhardness due to neutron irradiation and heat treatment were measured and compared. In the case of irradiation $(2.3{\times}10^{19}\;n/cm^2,\; E{\ge}1\;Mev,\; 288{\circ}C)$ hysteresis loop measurements show that susceptibility decreases as coercivity increase. Saturation magnetization do not show any change. Barkhausen noise amplitude and Barkhausen noise energy have decreased while Vickers microhardness has increased. For isothermally heat treated condition of irradiated specimen at 470 $^{\circ}C$ and 540 $^{\circ}C$, Barkhausen noise energy has increased while Vickers microhardness has decreased. Results of BNE and Vickers microhardness are reversed to the results on irradiated condition. All these consistent changes in magnetic parameter and Vickers microhardness measurement, which are thought to be resulted from the interaction between irradiation-induced defects and dislocation, and magnetic domain, respectively, show a possibility that magnetic measurement may be used to the evaluation of material degradation and recovery due to neutron irradiation and heat treatment, respectively, if a relevant large database in prepared.

  • PDF