지금까지의 빈발 패턴(Frequent Pattern) 마이닝에서는 각 항목들의 중요도(Weight)는 모든 같은 값으로 다루어 왔으나 실 환경에서는 각 항목들의 중요도가 다르게 적용되는 경우가 많이 있고 또 같은 항목이라도 시간에 따라 다른 중요도 값으로 다루어져야 할 경우가 있다. 비즈니스 데이터 분석 환경이나 웹 클릭 데이터 분석 환경과 같은 응용에서도 동적으로 변하는 중요도를 고려하여야 한다. 지금까지 항목의 중요도를 고려하는 여러 패턴 마이닝 기법들이 제안되고 있으나 동적으로 변하는 항목의 중요도를 고려하는 연구는 발표되지 않고 있다. 본 논문에서는 처음으로 동적인 항목들의 중요도(혹은 가중치)를 고려하는 빈발 패턴 마이닝 알고리즘을 제안한다. 제안하는 기법은 단 한번의 데이터베이스 스캔으로 처리되므로 스트림 데이터를 분석할 수 있다. 여러 실험을 통하여 제안하는 기법은 매우 효과적이며 확장성이 좋은 것임을 보인다.
인터넷 사용의 급증과 더불어 보다 편리한 인터넷 서비스를 위한 여러 연구가 활발히 진행되어 왔다. 웹 로그 데이터로부터 빈번하게 발생되는 웹 페이지들의 방문 시퀀스를 탐색하는 기법 역시 효과적인 웹 사이트를 설계하기 위한 목적으로 많이 연구되어 왔다. 그러나 기존의 방법들은 모두 여러 번의 데이터베이스 스캔을 필요로 하는 방법으로 지속적으로 생성되는 웹 로그 데이터로부터 빠르게 실시간적으로 웹 페이지 방문 시퀀스를 탐색하기에는 많은 어려움이 있었다. 또한 점진적(incremental)이고 대화형식(interactive)의 탐색 기법 역시 지속적으로 생성되는 웹 로그 데이터를 처리하기 위하여 필요한 기능들이다. 본 논문에서는 지속적으로 생성되는 웹 로그 데이터로부터 단일 스캔을 통하여 빈번히 발생하는 웹 페이지 방문 시퀀스를 점진적이고 대화 형식적인 방법으로 탐색하는 방법을 제안한다. 제안하는 방법은 WTS(web traversal sequence)-트리 구조를 사용하며 다양한 실험을 통하여 기존의 방법들에 비해 성능적으로 우수하고 효과적인 방범임을 증명한다.
일반적으로 데이터 마이닝은 다양한 예측기법이나 차이점의 분석을 통하여 유용한 정보 도출을 통해 매출의 증대나, 비용 절감 등의 효과를 가져 올수 있다. 데이터 마이닝 분석은 정보의 분류 또는 다양한 각도나 영역의 관점을 통하여 새로운 뷰를 분석할 수 있다. 기술적으로 데이터 마이닝의 연관규칙이나, 패턴의 분석은 대량의 데이터베이스에서 분석된다. 따라서 데이터 마이닝은 가장 빠르게 성장한 산업중의 하나이다. 그 이유는 정보기술이 발달하면서 수많은 자료들이 체계화된 데이터베이스에 저장이 되고, 기업의 데이터베이스의 규모는 폭발적으로 증가되고 있다. 본 논문에서는 자동차 마케팅에서 이용 가능한 데이터를 데이터 마이닝 분석 기법중의 하나인 Quinlan의 C4.5에 따라 분석 하였다. 본 논문에서는 기존 고객에 대한 고객 속성파악, 고객 분류 및 분석에 따른 고객의 구매패턴을 분석하여 해당 기업의 전략적 마케팅 수립을 통해 경영 과학적으로 접근할 수 있는 데이터 마이닝 분석에 관한 사례 연구이다.
Lee, Jae-Wan;Bobby D. Gerardo;Kim, Gui-Tae;Jeong, Jin-Seob
Journal of information and communication convergence engineering
/
제1권3호
/
pp.150-156
/
2003
This paper explored the use of an algorithm for the data mining and method in handling missing data which had generated enhanced association patterns observed using the data illustrated here. The evaluations showed that more association patterns are generated in the second analysis which suggests more meaningful rules than in the first situation. It showed that the model offer more precise and important association rules that is more valuable when applied for business decision making. With the discovery of accurate association rules or business patterns, strategies could be efficiently planned out and implemented to improve marketing schemes. This investigation gives rise to a number of interesting issues that could be explored further like the effect of outliers and missing data for detecting fraud and devious database entries.
The purpose of this research is to summarize the methodological issues in internet survey and to suggest personalized internet survey system using data mining technique for enhancing the survey quality of internet survey as well as utilizing the benefit of interactive multimedia factors of internet survey. The data mining technique used in this paper is Case Based Reasoning for adopting individual design preference affecting survey quality. For achieving the research purpose, two surveys, pre & post survey, were performed. Pre survey was done for implementing CBR database to find individual index affecting survey quality and post survey was used for measuring the peformance of personalized internet survey system. The result shows that the survey quality of personalized web survey system is better than generalized web survey system.
The methods of data mining are decision tree, association rules, clustering, neural network and so on. Data mining is the method to find useful information for large amounts of data in database. It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. We analyze Gyeongnam social indicator survey data by 2003 using association rule technique for environment information. Association rules are useful for determining correlations between attributes of a relation and have applications in marketing, financial and retail sectors. We can use association rule outputs in environmental preservation and environmental improvement.
한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
/
pp.431-434
/
2001
Knowledge discovery in databases(KDD) is the process for extracting valid, novel, potentially useful and understandable knowledge form real data. There are many academic and industrial activities with new technologies and application areas. Particularly, data mining is the core step in the KDD process, consisting of many algorithms to perform clustering, pattern recognition and rule induction functions. The main goal of these algorithms is prediction and description. Prediction means the assessment of unknown variables. Description is concerned with providing understandable results in a compatible format to human users. We introduce an efficient data mining algorithm considering predictive and descriptive capability. Reasonable pattern is derived from real world data by a revised neural network model and a proposed fuzzy rule extraction technique is applied to obtain understandable knowledge. The proposed neural network model is a hierarchical self-organizing system. The rule base is compatible to decision makers perception because the generated fuzzy rule set reflects the human information process. Results from real world application are analyzed to evaluate the system\`s performance.
Opinion mining and sentiment analysis(OMSA) as a research discipline has emerged during last 15 years and provides a methodology to computationally process the unstructured data mainly to extract opinions and identify their sentiments. The relatively new but fast growing research discipline has changed a lot during these years. This paper presents a scientometric analysis of research work done on OMSA during 2007-2016. For the literature analysis, research publications indexed in Web of Science (WoS) database are used as input data. The publication data is analyzed computationally to identify year-wise publication pattern, rate of growth of publications, research areas.
Journal of the Korean Data and Information Science Society
/
제16권2호
/
pp.207-216
/
2005
One of the well-studied problems in data mining is the search for association rules. Association rules are useful for determining correlations between attributes of a relation and have applications in marketing, financial and retail sectors. There are three criteria of association rule; support, confidence, lift. The goal of association rule mining is to find all the rules with support and confidence exceeding some user specified thresholds. We can know there is association between two items by the criteria of association rules. But we can not know the degree of association between two items. In this paper we examine the relation between the measures of association and the criteria of association rule for ordinal data.
TBM penetration rate is a function of intact rock properties, rock mass conditions and TBM operational parameters. Machine rate of penetrationcan be predicted by knowledge of the ground conditions and its effects on machine performance. The variation of TBM operational parameters such as penetration rate and thrust plays an important role in its performance. This study presents the results of the analysis on the TBM penetration rates in schistose rock types present along the alignment of Golab tunnel based on the analysis of a TBM performance database established for every stroke through different schistose rock types. The results of the analysis are compared to the results of some empirical and theoretical predictive models such as NTH and QTBM. Additional analysis was performed to find the optimum thrust and revolution per minute values for different schistose rock types.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.