• 제목/요약/키워드: Database Mining

검색결과 574건 처리시간 0.025초

한 번의 데이터베이스 탐색에 의한 빈발항목집합 탐색 (Frequent Patterns Mining using only one-time Database Scan)

  • 채덕진;김룡;이용미;황부현;류근호
    • 정보처리학회논문지D
    • /
    • 제15D권1호
    • /
    • pp.15-22
    • /
    • 2008
  • 본 논문에서는 한 번의 데이터베이스 스캔으로 빈발항목집합들을 생성할 수 있는 효율적인 알고리즘을 제안한다. 제안하는 알고리즘은 빈발 항목과 그 빈발항목을 포함하고 있는 트랜잭션과의 관계를 나타내는 이분할 그래프(bipartite graph)를 생성한다. 그리고 생성된 이분할 그래프를 이용하여 후보 항목집합들을 생성하지 않고 빈발 항목집합들을 추출할 수 있다. 이분할 그래프는 빈발항목들을 추출하기위해 대용량의 트랜잭션 데이터베이스를 스캔할 때 생성된다. 이분할 그래프는 빈발항목들과 그들이 속한 트랜잭션들 간의 관계를 엣지(edge)로 연결한 그래프이다. 즉, 본 논문에서의 이분할 그래프는 대용량의 데이터베이스에서 쉽게 발견할 수 없는 빈발항목과 트랜잭션의 관계를 검색하기 쉽게 색인(index)화한 그래프이다. 본 논문에서 제안하는 방법은 한 번의 데이터베이스 스캔만을 수행하고 후보 항목집합들을 생성하지 않기 때문에 기존의 방법들보다 빠른 시간에 빈발 항목집합들을 찾을 수 있다.

북한의 광업 및 암반공학 분야 최신 연구동향 분석 (Analysis of Recent Research Trend in the Mining Industry and Rock Engineering in North Korea)

  • 강일석;박영상;송재준
    • 터널과지하공간
    • /
    • 제30권1호
    • /
    • pp.29-38
    • /
    • 2020
  • 본 연구에서는 최근 10여 년 간 북한 광업 및 암반공학 분야의 발전 동향 및 최신 연구현황을 파악하기 위해, 2008-2017년 기간 출판된 북한 내 광업 관련 주요 학술지인 '채굴공학', '지질 및 지리과학', '기술혁신'을 대상으로 광업 및 암반공학 분야 연구논문의 투고 현황 및 연구 방법론을 분석하였다. 먼저 각 학술지에 수록된 연구논문의 서지정보 및 초록 자료를 정리하여 기초자료 데이터베이스를 작성하였다. 그리고 작성한 기초자료 데이터베이스를 활용하여 연구 분야별 학술지 투고 경향을 분석하였으며, 그 방법론 및 성과가 뛰어나다고 판단되는 연구논문에 대한 추가조사를 수행하여 북한 광업 및 암반공학 분야의 동향을 분석하였다. 연구동향 분석 결과, 최근 북한의 과학기술정책 변동 및 광업환경의 악화에 따른 정량화·자동화 경향성을 확인할 수 있었다. 본 연구결과는 향후 북한 광물자원 개발 전략 수립 및 경제성 평가를 위해 활용 가능할 것으로 판단되며, 향후 남북 기술협력 및 북한 현지 조사를 통해 보완될 수 있을 것이다.

트랜잭션 가중치 기반의 빈발 아이템셋 마이닝 기법의 성능분석 (Performance analysis of Frequent Itemset Mining Technique based on Transaction Weight Constraints)

  • 윤은일;편광범
    • 인터넷정보학회논문지
    • /
    • 제16권1호
    • /
    • pp.67-74
    • /
    • 2015
  • 최근, 아이템들의 가치를 고려한 빈발 아이템셋 마이닝 방법은 데이터 마이닝 분야에서 가장 중요한 이슈 중 하나로 활발히 연구되어왔다. 아이템들의 가치를 고려한 마이닝 기법들은 적용 방법에 따라 크게 가중화 빈발 아이템셋 마이닝, 트랜잭션 가중치 기반의 빈발 아이템셋 마이닝, 유틸리티 아이템셋 마이닝으로 구분된다. 본 논문에서는 트랜잭션 가중치 기반의 빈발 아이템셋 마이닝들에 대해 실증적인 분석을 수행한다. 일반적으로 트랜잭션 가중치 기반의 빈발 아이템셋 마이닝 기법들은 데이터베이스 내 아이템들의 가치를 고려함으로써 트랜잭션 가중치를 계산한다. 또한, 그 기법들은 계산된 각 트랜잭션의 가중치를 바탕으로 가중화 빈발 아이템셋들을 마이닝 한다. 트랜잭션 가중치는 트랜잭션 내에 높은 가치의 아이템이 많이 포함 될수록 높은 값으로 나타나기 때문에 우리는 각 트랜잭션의 가중치의 분석을 통해 그 가치를 파악할 수 있다. 우리는 트랜잭션 가중치 기반의 빈발 아이템셋 마이닝 기법 중에서 가장 유명한 알고리즘인 WIS와 WIT-FWIs, IT-FWIs-MODIFY, WIT-FWIs-DIFF의 장 단점을 분석하고 각각의 성능을 비교한다. WIS는 트랜잭션 가중치 기반의 빈발 아이템셋 마이닝의 개념과 그 기법이 처음 제안된 알고리즘이며, 전통적인 빈발 아이템셋 마이닝 기법인 Apriori를 기반으로 하고 있다. 또 다른 트랜잭션 가중치 기반의 빈발 아이템셋 마이닝 방법인 WIT-FWIs와 WIT-FWIs-MODIFY, WIT-FWIs-DIFF는 가중화된 빈발 아이템셋 마이닝을 더 효율적으로 수행하기 위해 격자구조(Lattice) 형태의 특별한 저장구조인 WIT-tree를 이용한다. WIT-tree의 각 노드에는 아이템셋 정보와 아이템셋이 포함된 트랜잭션의 ID들이 저장되며, 이 구조를 사용함으로써 아이템셋 마이닝 과정에서 발생되는 다수의 데이터베이스 스캔 과정이 감소된다. 특히, 전통적인 알고리즘들이 수많은 데이터베이스 스캔을 수행하는 반면에, 이 알고리즘들은 WIT-tree를 이용해 데이터베이스를 오직 한번만 읽음으로써 마이닝과정에서 발생 가능한 오버헤드 문제를 해결한다. 또한, 공통적으로 길이 N의 두 아이템셋을 이용해 길이 N+1의 새로운 아이템셋을 생성한다. 먼저, WIT-FWIs는 각 아이템셋이 동시에 발생되는 트랜잭션들의 정보를 활용하는 것이 특징이다. WIT-FWIs-MODIFY는 조합되는 아이템셋의 정보를 이용해 빈도수 계산에 필요한 연산을 줄인 알고리즘이다. WIT-FWIs-DIFF는 두 아이템셋 중 하나만 발생한 트랜잭션의 정보를 이용한다. 우리는 다양한 실험환경에서 각 알고리즘의 성능을 비교분석하기 위해 각 트랜잭션의 형태가 유사한 dense 데이터와 각 트랜잭션의 구성이 서로 다른 sparse 데이터를 이용해 마이닝 시간과 최대 메모리 사용량을 평가한다. 또한, 각 알고리즘의 안정성을 평가하기 위한 확장성 테스트를 수행한다. 결과적으로, dense 데이터에서는 WIT-FWIs와 WIT-FWIs-MODIFY가 다른 알고리즘들보다 좋은 성능을 보이고 sparse 데이터에서는 WIT-FWI-DIFF가 가장 좋은 효율성을 갖는다. WIS는 더 많은 연산을 수행하는 알고리즘을 기반으로 했기 때문에 평균적으로 가장 낮은 성능을 보인다.

Development of Practical Data Mining Methods for Database Summarization

  • Lee, Do-Heon
    • 정보기술과데이타베이스저널
    • /
    • 제4권2호
    • /
    • pp.33-45
    • /
    • 1998
  • Database summarization is the procedure to obtain generalized and representative descriptions expressing the content of a large amount of database at a glance. We present a top-down summary refinement procedure to discover database summaries. The procedure exploits attribute concept hierarchies that represent ISA relationships among domain concepts. It begins with the most generalized summary and proceeds to find more specialized ones by stepwise refinements. This top-down paradigm reveals at least two important advantages compared to the previous bottom-up methods. Firstly, it provides a natural way of reflecting the user's own discovery preference interactively. Secondly, it does not produce too large intermediate result that makes it hard for the bottom-up approach to be applied in practical environment. The proposed procedure can also be easily extended for distributed databases. Information content measure of a database summary is derived in order to identify more informative summaries among the discovered results.

Knowledge Discovery in Nursing Minimum Data Set Using Data Mining

  • Park Myong-Hwa;Park Jeong-Sook;Kim Chong-Nam;Park Kyung-Min;Kwon Young-Sook
    • 대한간호학회지
    • /
    • 제36권4호
    • /
    • pp.652-661
    • /
    • 2006
  • Purpose. The purposes of this study were to apply data mining tool to nursing specific knowledge discovery process and to identify the utilization of data mining skill for clinical decision making. Methods. Data mining based on rough set model was conducted on a large clinical data set containing NMDS elements. Randomized 1000 patient data were selected from year 1998 database which had at least one of the five most frequently used nursing diagnoses. Patient characteristics and care service characteristics including nursing diagnoses, interventions and outcomes were analyzed to derive the meaningful decision rules. Results. Number of comorbidity, marital status, nursing diagnosis related to risk for infection and nursing intervention related to infection protection, and discharge status were the predictors that could determine the length of stay. Four variables (age, impaired skin integrity, pain, and discharge status) were identified as valuable predictors for nursing outcome, relived pain. Five variables (age, pain, potential for infection, marital status, and primary disease) were identified as important predictors for mortality. Conclusions. This study demonstrated the utilization of data mining method through a large data set with stan dardized language format to identify the contribution of nursing care to patient's health.

트리밍 방식 수정을 통한 연관규칙 마이닝 개선 (Improved Association Rule Mining by Modified Trimming)

  • 황원태;김동승
    • 전자공학회논문지CI
    • /
    • 제45권3호
    • /
    • pp.15-21
    • /
    • 2008
  • 본 논문은 2단 샘플링을 통해 정확도는 줄지만 신속하게 연관규칙을 추출하는 새로운 마이닝 알고리즘을 제안한다. 직전 연구인 FAST(Finding Association by Sampling Technique) 기법은 빈발1항목만 최적샘플 형성과정에 적용하여 빈발2항목 및 그이상의 빈발항목을 샘플 추출에 반영하지 못하였다. 이 논문은 그러한 약점을 보완하여 트리밍 과정에서 손실항목과 오류항목의 비중을 동시에 고려하여 다수 빈발항목에 대한 마이닝의 정확성을 높였다. 대표적인 데이터 세트를 써서 실험한 결과 이전연구와 비교해서 동일한 품질하에서 새 알고리즘의 정확도가 향상됨을 확인하였다.

A bio-text mining system using keywords and patterns in a grid environment

  • Kwon, Hyuk-Ryul;Jung, Tae-Sung;Kim, Kyoung-Ran;Jahng, Hye-Kyoung;Cho, Wan-Sup;Yoo, Jae-Soo
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2007년도 춘계학술대회
    • /
    • pp.48-52
    • /
    • 2007
  • As huge amount of literature including biological data is being generated after post genome era, it becomes difficult for researcher to find useful knowledge from the biological databases. Bio-text mining and related natural language processing technique are the key issues in the intelligent knowledge retrieval from the biological databases. We propose a bio-text mining technique for the biologists who find Knowledge from the huge literature. At first, web robot is used to extract and transform related literature from remote databases. To improve retrieval speed, we generate an inverted file for keywords in the literature. Then, text mining system is used for extracting given knowledge patterns and keywords. Finally, we construct a grid computing environment to guarantee processing speed in the text mining even for huge literature databases. In the real experiment for 10,000 bio-literatures, the system shows 95% precision and 98% recall.

  • PDF

올바른 연관성 규칙 생성을 위한 의사결정과정의 제안 (Decision process for right association rule generation)

  • 박희창
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권2호
    • /
    • pp.263-270
    • /
    • 2010
  • 데이터마이닝은 방대한 양의 데이터 속에서 쉽게 드러나지 않는 유용한 정보를 체계적이고도 자동적으로 찾아내는 기법이다. 데이터마이닝의 중요한 목표 중의 하나는 여러 변수들 간의 관계를 발견하고 결정하는 것이다. 연관성 규칙은 항목 집합으로 표현된 트랜잭션에서 각 항목간의 연관성을 반영하는 규칙으로서, 항목 집합간의 관계를 지지도, 신뢰도, 순수 신뢰도 등과 같은 흥미도 측도에 의해 명확히 수치화함으로써 두 개 이상의 항목집합간의 관련성을 표시해주기 때문에 현업에서 많이 활용되고 있다. 본 논문에서는 기존에 많이 활용되고 있는 흥미도 측도인 신뢰도와 순수 신뢰도의 문제점을 보완하여 연관성 규칙을 올바르게 생성하기 위한 새로운 의사결정과정을 제안하고자 한다. 본 논문에서 제안하는 의사결정과정은 특히 스트리밍 데이터베이스에서의 연관성 규칙을 탐색하는 데 효율적이다.

Data Mining for CRM

  • 조성준
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 2001년도 춘계 Conference: CRM과 DB응용 기술을 통한 e-Business혁신
    • /
    • pp.85-105
    • /
    • 2001
  • o 대량의 데이터베이스로부터 탐색과 분석을 통하여 의미 있는 패턴이나 규칙을 찾아내는 과정 o 분류, 추정, 예측, 유사통합, 군집화, 기술 o 가설검정, 지식발견 (중략)

  • PDF