• Title/Summary/Keyword: Database Algorithm

Search Result 1,655, Processing Time 0.039 seconds

Analysis of Database Referenced Navigation by the Combination of Heterogeneous Geophysical Data and Algorithms

  • Lee, Jisun;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.373-382
    • /
    • 2016
  • In this study, an EKF (Extended Kalman Filter) based database reference navigation using both gravity gradient and terrain data was performed to complement the weakness of using only one type of geophysical DB (Database). Furthermore, a new algorithm which combines the EKF and profile matching was developed to improve the stability and accuracy of the positioning. On the basis of simulations, it was found that the overall navigation performance was improved by the combination of geophysical DBs except the two trajectories in which the divergence of TRN (Terrain Referenced Navigation) occurred. To solve the divergence problem, the profile matching algorithm using the terrain data is combined with the EKF. The results show that all trajectories generate the stable performance with positioning error ranges between 14m to 23m although not all trajectories positioning accuracy is improved. The average positioning error from the combined algorithm for all nine trajectories is about 18 m. For further study, a development of a switching geophysical DB or algorithm between the EKF and the profile matching to improve the navigation performance is suggested.

A K-Nearest Neighbour Query Processing Algorithm for Encrypted Spatial Data in Road Network (도로 네트워크 환경에서 암호화된 공간데이터를 위한 K-최근접점 질의 처리 알고리즘)

  • Jang, Mi-Young;Chang, Jae-Woo
    • Spatial Information Research
    • /
    • v.20 no.3
    • /
    • pp.67-81
    • /
    • 2012
  • Due to the recent advancement of cloud computing, the research on database outsourcing has been actively done. Moreover, the number of users who utilize Location-based Services(LBS) has been increasing with the development in w ireless communication technology and mobile devices. Therefore, LBS providers attempt to outsource their spatial database to service provider, in order to reduce costs for data storage and management. However, because unauthorized access to sensitive data is possible in spatial database outsourcing, it is necessary to study on the preservation of a user's privacy. Thus, we, in this paper, propose a spatial data encryption scheme to produce outsourced database from an original database. We also propose a k-Nearest Neighbor(k-NN) query processing algorithm that efficiently performs k-NN by using the outsourced database. Finally, we show from performance analysis that our algorithm outperforms the existing one.

A Study on the Face Recognition Using PCA

  • Lee Joon-Tark;Kueh Lee Hui
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.305-309
    • /
    • 2006
  • In this paper, a face recognition algorithm system using Principle Component Analysis is proposed. The algorithm recognized a person by comparing characteristics (features) of the face to those of known individuals which is a face database of Intelligence Control Laboratory(ICONL). Experiments were simulated in order to demonstrate the performance of this algorithm due to face recognition which presented for the classification of face and non-face and the classification of known and unknown.

  • PDF

A Study on the Face Recognition Using PCA Algorithm

  • Lee, John-Tark;Kueh, Lee-Hui
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.252-258
    • /
    • 2007
  • In this paper, a face recognition algorithm system using Principal Component Analysis (PCA) is proposed. The algorithm recognized a person by comparing characteristics (features) of the face to those of known individuals of Intelligent Control Laboratory (ICONL) face database. Simulations are carried out to investigate the algorithm recognition performance, which classified the face as a face or non-face and then classified it as known or unknown one. Particularly, a Principal Components of Linear Discriminant Analysis (PCA + LDA) face recognition algorithm is also proposed in order to confirm the recognition performances and the adaptability of a proposed PCA for a certain specific system.

Improvement of RocksDB Performance via Large-Scale Parameter Analysis and Optimization

  • Jin, Huijun;Choi, Won Gi;Choi, Jonghwan;Sung, Hanseung;Park, Sanghyun
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.374-388
    • /
    • 2022
  • Database systems usually have many parameters that must be configured by database administrators and users. RocksDB achieves fast data writing performance using a log-structured merged tree. This database has many parameters associated with write and space amplifications. Write amplification degrades the database performance, and space amplification leads to an increased storage space owing to the storage of unwanted data. Previously, it was proven that significant performance improvements can be achieved by tuning the database parameters. However, tuning the multiple parameters of a database is a laborious task owing to the large number of potential configuration combinations. To address this problem, we selected the important parameters that affect the performance of RocksDB using random forest. We then analyzed the effects of the selected parameters on write and space amplifications using analysis of variance. We used a genetic algorithm to obtain optimized values of the major parameters. The experimental results indicate an insignificant reduction (-5.64%) in the execution time when using these optimized values; however, write amplification, space amplification, and data processing rates improved considerably by 20.65%, 54.50%, and 89.68%, respectively, as compared to the performance when using the default settings.

An Interactive e-HealthCare Framework Utilizing Online Hierarchical Clustering Method (온라인 계층적 군집화 기법을 활용한 양방향 헬스케어 프레임워크)

  • Musa, Ibrahim Musa Ishag;Jung, Sukho;Shin, DongMun;Yi, Gyeong Min;Lee, Dong Gyu;Sohn, Gyoyong;Ryu, Keun Ho
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.399-400
    • /
    • 2009
  • As a part of the era of human centric applications people started to care about their well being utilizing any possible mean. This paper proposes a framework for real time on-body sensor health-care system, addresses the current issues in such systems, and utilizes an enhanced online divisive agglomerative clustering algorithm (EODAC); an algorithm that builds a top-down tree-like structure of clusters that evolves with streaming data to rationally cluster on-body sensor data and give accurate diagnoses remotely, guaranteeing high performance, and scalability. Furthermore it does not depend on the number of data points.

Design of Robust Face Recognition System with Illumination Variation Realized with the Aid of CT Preprocessing Method (CT 전처리 기법을 이용하여 조명변화에 강인한 얼굴인식 시스템 설계)

  • Jin, Yong-Tak;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.91-96
    • /
    • 2015
  • In this study, we introduce robust face recognition system with illumination variation realized with the aid of CT preprocessing method. As preprocessing algorithm, Census Transform(CT) algorithm is used to extract locally facial features under unilluminated condition. The dimension reduction of the preprocessed data is carried out by using $(2D)^2$PCA which is the extended type of PCA. Feature data extracted through dimension algorithm is used as the inputs of proposed radial basis function neural networks. The hidden layer of the radial basis function neural networks(RBFNN) is built up by fuzzy c-means(FCM) clustering algorithm and the connection weights of the networks are described as the coefficients of linear polynomial function. The essential design parameters (including the number of inputs and fuzzification coefficient) of the proposed networks are optimized by means of artificial bee colony(ABC) algorithm. This study is experimented with both Yale Face database B and CMU PIE database to evaluate the performance of the proposed system.

A Study on the Secure Database Controlled Under Cloud Environment (클라우드 환경하에서의 안전한 데이터베이스 구축에 관한 연구)

  • Kim, SungYong;Kim, Ji-Hong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.6
    • /
    • pp.1259-1266
    • /
    • 2013
  • Nowadays, the databases are getting larger and larger. As the company has difficulty in managing the database, they want to outsource the database to the cloud system. In this case the database security is more important because their database is managed by the cloud service provider. Among database security techniques, the encryption method is a well-certified and established technology for protecting sensitive data. However, once encrypted, the data can no longer be easily queried. The performance of the database depends on how to encrypt the sensitive data, and on the approach for searching, and the retrieval efficiency that is implemented. In this paper we propose the new suitable mechanism to encrypt the database and lookup process on the encrypted database under control of the cloud service provider. This database encryption algorithm uses the bloom filter with the variable keyword based index. Finally, we demonstrate that the proposed algorithm should be useful for database encryption related research and application activities.

Generation Method of Robot Movement Using Evolutionary Algorithm (진화 알고리즘을 사용한 휴머노이드 로봇의 동작 학습 알고리즘)

  • Park, Ga-Lam;Ra, Syung-Kwon;Kim, Chan-Hwan;Song, Jae-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.315-316
    • /
    • 2007
  • This paper presents a new methodology to improve movement database for a humanoid robot. The database is initially full of human motions so that the kinetics characteristics of human movement are immanent in it. then, the database is updated to the pseudo-optimal motions for the humanoid robot to perform more natural motions, which contain the kinetics characteristics of robot. for this, we use the evolutionary algorithm. the methodology consists of two processes : (1) the offline imitation learning of human movement and (2) the online generation of natural motion. The offline process improve the initial human motion database using the evolutionary algorithm and inverse dynamics-based optimization. The optimization procedure generate new motions using the movement primitive database, minimizing the joint torque. This learning process produces a new database that can endow the humanoid robot with natural motions, which requires minimal torques. In online process, using the linear combination of the motion primitive in this updated database, the humanoid robot can generate the natural motions in real time. The proposed framework gives a systematic methodology for a humanoid robot to learn natural motions from human motions considering dynamics of the robot. The experiment of catching a ball thrown by a man is performed to show the feasibility of the proposed framework.

  • PDF

Industrial Waste Database Analysis Using Data Mining Techniques

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.455-465
    • /
    • 2006
  • Data mining is the method to find useful information for large amounts of data in database. It is used to find hidden knowledge by massive data, unexpectedly pattern, and relation to new rule. The methods of data mining are decision tree, association rules, clustering, neural network and so on. We analyze industrial waste database using data mining technique. We use k-means algorithm for clustering and C5.0 algorithm for decision tree and Apriori algorithm for association rule. We can use these outputs for environmental preservation and environmental improvement.

  • PDF