• Title/Summary/Keyword: Database Algorithm

Search Result 1,655, Processing Time 0.026 seconds

Design and Implementation of Distributed In-Memory DBMS-based Parallel K-Means as In-database Analytics Function (분산 인 메모리 DBMS 기반 병렬 K-Means의 In-database 분석 함수로의 설계와 구현)

  • Kou, Heymo;Nam, Changmin;Lee, Woohyun;Lee, Yongjae;Kim, HyoungJoo
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.3
    • /
    • pp.105-112
    • /
    • 2018
  • As data size increase, a single database is not enough to serve current volume of tasks. Since data is partitioned and stored into multiple databases, analysis should also support parallelism in order to increase efficiency. However, traditional analysis requires data to be transferred out of database into nodes where analytic service is performed and user is required to know both database and analytic framework. In this paper, we propose an efficient way to perform K-means clustering algorithm inside the distributed column-based database and relational database. We also suggest an efficient way to optimize K-means algorithm within relational database.

Discovery Temporal Association Rules in Distributed Database (분산데이터베이스 환경하의 시간연관규칙 적용)

  • Yan Zhao;Kim, Long;Sungbo Seo;Ryu, Keun-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.115-117
    • /
    • 2004
  • Recently, mining far association rules in distributed database environments is a central problem in knowledge discovery area. While the data are located in different share-nothing machines, and each data site grows by time. Mining global frequent itemsets is hard and not efficient in large number of distributed sewen. In many distributed databases. time component(which is usually attached to transactions in database), contains meaningful time-related rules. In this paper, we design a new DTA(distributed temporal association) algorithm that combines temporal concepts inside distributed association rules. The algorithm confirms the time interval for applying association rules in distributed databases. The experiment results show that DTA can generate interesting correlation frequent itemsets related with time periods.

  • PDF

Motion Imitation Learning and Real-time Movement Generation of Humanoid Using Evolutionary Algorithm (진화 알고리즘을 사용한 인간형 로봇의 동작 모방 학습 및 실시간 동작 생성)

  • Park, Ga-Lam;Ra, Syung-Kwon;Kim, Chang-Hwan;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1038-1046
    • /
    • 2008
  • This paper presents a framework to generate human-like movements of a humanoid in real time using the movement primitive database of a human. The framework consists of two processes: 1) the offline motion imitation learning based on an Evolutionary Algorithm and 2) the online motion generation of a humanoid using the database updated bγ the motion imitation teaming. For the offline process, the initial database contains the kinetic characteristics of a human, since it is full of human's captured motions. The database then develops through the proposed framework of motion teaming based on an Evolutionary Algorithm, having the kinetic characteristics of a humanoid in aspect of minimal torque or joint jerk. The humanoid generates human-like movements far a given purpose in real time by linearly interpolating the primitive motions in the developed database. The movement of catching a ball was examined in simulation.

A Design Database for High Speed IC Package Interconnection (고속 집적회로 패키지 인터커넥션을 위한 설계 데이타베이스)

  • ;;;F. Szidarovszki;O.A.Palusinski
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.184-197
    • /
    • 1995
  • In this paper, high speed IC package-to-package interconnections are modeled as lossless multiconductor transmission lines operating in the TEM mode. And, three mathematical algorithms for computing electrical parameters of the lossless multiconductor transmission lines are described. A semi-analytic Green's function method is used in computing per unit length capacitance and inductance matrices, a matrix square root algorithm based on the QR algorithm is used in computing a characteristic impedance matrix, and a matrix algorithm based on the theory of M-matrix is used in computing a diagonally matched load impedance matrix. These algorithms are implemented in a computer program DIME (DIagonally Matched Load Impedance Extractor) which computes electrical parameters of the lossless multiconductor transmission lines. Also, to illustrate the concept of design database for high speed IC package-to-package interconnection, a database for the multi conductor strip transmission lines system is constructed. This database is constructed with a sufficiently small number of nodes using the multi-dimensional cubic spline interpolation algorithm. The maximum interpolation error for diagonally matched load impedance matrix extraction from the database is 1.3 %.

  • PDF

A Study on the Detection of the Ventricular Fibrillation based on Wavelet Transform and Artificial Neural Network (웨이브렛과 신경망 기반의 심실 세동 검출 알고리즘에 관한 연구)

  • Song Mi-Hye;Park Ho-Dong;Lee Kyoung-Joung;Park Kwang-Li
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.780-785
    • /
    • 2004
  • In this paper, we proposed a ventricular fibrillation detection algorithm based on wavelet transform and artificial neural network. we selected RR intervals, the 6th and 7th wavelet coefficients(D6, D7) as features for classifying ventricular fibrillation. To evaluate the performance of the proposed algorithm, we compared the result of the proposed algorithm with that of fuzzy inference and fuzzy-neural network. MIT-BIH Arrhythmia database, Creighton University Ventricular Tachyarrhythmia database and MIH-BIH Malignant Ventricular Arrhythmia database were used as test and learning data. Among the algorithms, the proposed algorithm showed that the classification rate of normal and abnormal beat was sensitivity(%) of 96.10 and predictive positive value(%) of 99.07, and that of ventricular fibrillation was sensitivity(%) of 99.45. Finally. the proposed algorithm showed good performance compared to two other methods.

Implementation of a Web-Based Intelligent Decision Support System for Apartment Auction (아파트 경매를 위한 웹 기반의 지능형 의사결정지원 시스템 구현)

  • Na, Min-Yeong;Lee, Hyeon-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.11
    • /
    • pp.2863-2874
    • /
    • 1999
  • Apartment auction is a system that is used for the citizens to get a house. This paper deals with the implementation of a web-based intelligent decision support system using OLAP technique and data mining technique for auction decision support. The implemented decision support system is working on a real auction database and is mainly composed of OLAP Knowledge Extractor based on data warehouse and Auction Data Miner based on data mining methodology. OLAP Knowledge Extractor extracts required knowledge and visualizes it from auction database. The OLAP technique uses fact, dimension, and hierarchies to provide the result of data analysis by menas of roll-up, drill-down, slicing, dicing, and pivoting. Auction Data Miner predicts a successful bid price by means of applying classification to auction database. The Miner is based on the lazy model-based classification algorithm and applies the concepts such as decision fields, dynamic domain information, and field weighted function to this algorithm and applies the concepts such as decision fields, dynamic domain information, and field weighted function to this algorithm to reflect the characteristics of auction database.

  • PDF

Visual Location Recognition Using Time-Series Streetview Database (시계열 스트리트뷰 데이터베이스를 이용한 시각적 위치 인식 알고리즘)

  • Park, Chun-Su;Choeh, Joon-Yeon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.57-61
    • /
    • 2019
  • Nowadays, portable digital cameras such as smart phone cameras are being popularly used for entertainment and visual information recording. Given a database of geo-tagged images, a visual location recognition system can determine the place depicted in a query photo. One of the most common visual location recognition approaches is the bag-of-words method where local image features are clustered into visual words. In this paper, we propose a new bag-of-words-based visual location recognition algorithm using time-series streetview database. The proposed algorithm selects only a small subset of image features which will be used in image retrieval process. By reducing the number of features to be used, the proposed algorithm can reduce the memory requirement of the image database and accelerate the retrieval process.

A Recovery Scheme of Single Node Failure using Version Caching in Database Sharing Systems (데이타베이스 공유 시스템에서 버전 캐싱을 이용한 단일 노드 고장 회복 기법)

  • 조행래;정용석;이상호
    • Journal of KIISE:Databases
    • /
    • v.31 no.4
    • /
    • pp.409-421
    • /
    • 2004
  • A database sharing system (DSS) couples a number of computing nodes for high performance transaction processing, and each node in DSS shares database at the disk level. In case of node failures in DSS, database recovery algorithms are required to recover the database in a consistent state. A database recovery process in DSS takes rather longer time compared with single database systems, since it should include merging of discrete log records in several nodes and perform REDO tasks using the merged lo9 records. In this paper, we propose a two version caching (2VC) algorithm that improves the cache fusion algorithm introduced in Oracle 9i Real Application Cluster (ORAC). The 2VC algorithm can achieve faster database recovery by eliminating the use of merged log records in case of single node failure. Furthermore, it can improve the performance of normal transaction processing by reducing the amount of unnecessary disk force overhead that occurs in ORAC.

An Efficient Algorithm for Mining Frequent Sequences In Spatiotemporal Data

  • Vhan Vu Thi Hong;Chi Cheong-Hee;Ryu Keun-Ho
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.61-66
    • /
    • 2005
  • Spatiotemporal data mining represents the confluence of several fields including spatiotemporal databases, machine loaming, statistics, geographic visualization, and information theory. Exploration of spatial data mining and temporal data mining has received much attention independently in knowledge discovery in databases and data mining research community. In this paper, we introduce an algorithm Max_MOP for discovering moving sequences in mobile environment. Max_MOP mines only maximal frequent moving patterns. We exploit the characteristic of the problem domain, which is the spatiotemporal proximity between activities, to partition the spatiotemporal space. The task of finding moving sequences is to consider all temporally ordered combination of associations, which requires an intensive computation. However, exploiting the spatiotemporal proximity characteristic makes this task more cornputationally feasible. Our proposed technique is applicable to location-based services such as traffic service, tourist service, and location-aware advertising service.

  • PDF

An Efficient Data Mining Algorithm based on the Database Characteristics (데이터 베이스 특성에 따른 효율적인 데이터 마이닝 알고리즘)

  • Park, Ji-Hyun;Koh, Chan
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.10 no.1
    • /
    • pp.107-119
    • /
    • 2006
  • Recently with developments of an internet and web techniques, the amount of data that are stored in database is increasing rapidly. So the range of adaption in database has been expanded and a research of Data Mining techniques finding useful skills from the huge database has been progressed. Many original algorithms have been developed by cutting down the item set and the size of database isn't required in the entire course of creating frequent item sets. Although those skills could save time in some course, it requires too much time for adapting those techniques in other courses. In this paper, an algorithm is proposed. In an Transaction Database that the length of it's transactions are short or the number of items are relatively small, this algorithm scans a database once by using a Hashing Technique and at the same time, stores all parts of the set, can be appeared at each transaction, in an Hash-table. So without an influence of n minimum percentage of support, it can discover a set of frequent items in more shorter time than the time what is used by an original algorithm.

  • PDF