• 제목/요약/키워드: Database Algorithm

검색결과 1,655건 처리시간 0.033초

매치메이커: 선호도를 고려한 퍼지 볼트 기법 (Matchmaker: Fuzzy Vault Scheme for Weighted Preference)

  • 툽신후;강전일;양대헌;이경희
    • 정보보호학회논문지
    • /
    • 제26권2호
    • /
    • pp.301-314
    • /
    • 2016
  • Juels와 Sudan의 퍼지 볼트 기법은 기법이 갖는 오류 내성 때문에 많은 연구에 사용 되어오고 있다. 그러나 이들의 퍼지 볼트 기법은 그들의 논문에서 영화 애호가 문제를 예를 들었음에도 불구하고, 사람들이 일반적으로 갖는 선호도(preference)의 차이에 대한 고려가 존재하지 않는다. 한편, Nyang과 Lee는 안전하고 성능이 좋은 얼굴인증 시스템을 만들기 위해서, 얼굴 특징이 서로 다른 가중치를 갖도록 얼굴 특징과 퍼지 볼트(vault) 사이에 특별한 연관 구조를 갖는 얼굴 인증 시스템(이른바, 퍼지 얼굴 볼트)을 소개하였다. 그러나 그들의 기법은 일반적인 특징 추출 기법들이 클래스 내부/간 차이를 최적화하려는 특성이 있기 때문에 인증 실패율을 성공적으로 낮추지 못할 것으로 쉽게 예상할 수 있다. 이 논문에서는 퍼지 볼트의 유연성을 제공해주기 위하여 Nyang과 Lee의 퍼지 볼트기반의 얼굴 인증 시스템에서 가중치 아이디어를 다른 방식으로 구현한 버킷(bucket) 구조와 사용자 선호도와 시스템 구현 간 관계를 공식화하는 세 가지 분포 함수에 대해서 소개한다. 또한 이를 바탕으로 선호도 매치메이커(preference matchmaker) 기법을 제안하며, 영화 데이터베이스를 이용하여 이러한 매치메이커의 연산 성능을 확인해본다.

디지털 흉부영상에서 주성분분석을 이용한 폐암인식 (Recognition for Lung Cancer using PCA in the Digital Chest Radiography)

  • 박형후;옥치상;강세식;고성진;최석윤
    • 한국정보통신학회논문지
    • /
    • 제15권7호
    • /
    • pp.1573-1582
    • /
    • 2011
  • 흉부의 폐질환으로 폐암발생은 꾸준히 증가하고 있다. 일차적인 폐암진단 방법에는 흉부X선영상이다. 흉부X선영상 이용하여 폐암진단을 하기 위해서는 임상경험이 풍부한 의사가 필요하다. 그러나 풍부한 경험을 가진 의사라도 오진이 발생할 수 있고 이한 폐암의 조기진단과 생존률을 낮게 한다. 본 논문에서는 주성분분석을 이용하여 학습영상의 데이터베이스와 질병이 있는 흉부영상을 진단함으로써 컴퓨터보조진단의 기반을 마련하고자 한다. 이를 의사가 진단하기 전의 예비판독의 단계로 이용한다면 오진으로 인한 환자의 조기 진단률의 감소를 줄일 수가 있다. 실험은 정상흉부X선영상과 악성폐암인 기관지암(Bronchogenic Carcinoma)과 양성종양인 육아종(Granuloma)으로 실험하였다. 영상은 주성분분석 후 정상영상과 질환 영상의 고유영상을 추출하고 상호 비교한 뒤 인식효율을 비교하였다. 결과로는 정상영상과 질환영상간의 인식률은 높았으나 질환간의 인식효율은 정상에 비해 다소 떨어지는 것으로 나타났다. 흉부질환간의 인식효율을 높이기 위해서 관련 알고리즘에 관한 연구가 계속 이어진다면 컴퓨터보조진단에 좋은 연구기반이 되리라 생각한다.

수평 분할 방식을 이용한 병렬 셀-기반 필터링 기법의 설계 및 성능 평가 (Design and Performance Analysis of a Parallel Cell-Based Filtering Scheme using Horizontally-Partitioned Technique)

  • 장재우;김영창
    • 정보처리학회논문지D
    • /
    • 제10D권3호
    • /
    • pp.459-470
    • /
    • 2003
  • 데이터웨어하우징의 애트리뷰트 벡터나 멀티미디어 데이터베이스의 특징 벡터는 모두 고차원 데이터를 이루고 있기 때문에, 이러한 고차원 데이터를 효율적으로 검색하기 위해서는 고차원 색인 기법이 요구된다. 이를 위하여 다수의 고차원 색인 기법들이 제안되었는데, 제안된 대부분의 색인 기법들이 차원의 수가 증가할수록 검색 성능이 급격히 저하되는 ‘차원 저주(dimensional curse)’ 문제를 지니고 있다. 셀-기반 필터링(Cell-Based Filtering : CBF) 기법은 이러한 차원 저주 문제를 해결하기 위해 제안되었다. 그러나 CBF 기법은 데이터의 양이 증가할수록 선형적으로 검색 성능이 감소하며, 이를 극복하기 위해 병렬 처리 기법을 사용하는 것이 필요하다. 본 논문에서는 데이터 디클러스터링(declustering) 방법으로 수평 분할 방식을 사용한 병렬 CBF 기법을 제안한다. 아울러 제안한 병렬 CBF 기법의 성능을 최대화하기 위하여, 병렬 CBF 기법을 다수의 서버로 구성된 Shared Nothing(SN) 구조의 클러스터 아키텍쳐 하에서 구축한다. 또한 SN 구조의 클러스터 아키텍쳐에 적합한 데이타 삽입 알고리즘, 범위질의 처리 알고리즘, k-최근접 질의 처리 알고리즘을 제시한다. 마지막으로 제안하는 병렬 CBF 기법이 기존 CBF 기법과 비교하여 서버 개수에 비례하여 우수한 검색 성능을 달성함을 보인다.

3개의 연속된 프레임을 이용한 반사된 빛 영역추출 기반의 동작검출 알고리즘 구현 (Implementation of Motion Detection based on Extracting Reflected Light using 3-Successive Video Frames)

  • 김창민;이규웅
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권3호
    • /
    • pp.133-138
    • /
    • 2016
  • 실시간 동작영역 검출 알고리즘의 차영상 기법은 배경프레임을 이용한 방식과 이전프레임을 이용한 방식으로 구분된다. 배경프레임을 이용한 방식은 사전에 분석한 배경정보를 기반으로 정확한 동작영역을 검출할 수 있는 방법이다. 하지만 배경정보가 변경될 경우 정보갱신이 요구되므로, 실시간 응용분야에 제한적이다. 이전프레임을 이용한 방식은 현재프레임과 시차간격이 존재하는 이전프레임을 취득하여 동작의 윤곽선을 검출한다. 하지만 실제 윤곽선과 오차를 보여 보정이 필요하다는 단점을 가지고 있다. 본 논문이 제안하는 3 way-diff 알고리즘은 프레임 제작과정 중 발생되는 반사된 빛 영역과 차영상 기법을 이용해 동작의 윤곽선을 구하므로, 기존 방식들에 배경의존성 및 부정확성을 보완한다. 다중 차영상 기법 및 비트단위의 AND 연산으로 수행되며, 이 과정으로 배경프레임을 이용한 방식의 정확성과 이전프레임을 이용한 방식의 환경적응력을 융합하며 노이즈의 발생을 감소시킨다. 또한 제안하는 기법의 성능은 CASIA의 Gait 데이터베이스 샘플을 이용해 각 기법에 대한 성능평가로 증명한다.

국내 광역 과학 지도 생성 연구 (Making a Science Map of Korea)

  • 이재윤
    • 정보관리학회지
    • /
    • 제24권3호
    • /
    • pp.363-383
    • /
    • 2007
  • 전 학문 분야를 포괄하는 광역 과학 지도는 학문 분야 사이의 구조적인 관계를 시각적으로 분석하는데 사용되고 있다. 이 연구에서는 광역 과학 지도에 대한 선행 연구를 개관한 후 새로운 방법으로 국내의 학술 활동을 반영하는 광역 과학 지도를 생성하였다. 광역 과학 지도에 대한 연구는 ISI사(현재 Thomson Scientific)의 Garfield와 Small에 의해서 촉발되었고 최근에는 스페인 그라나다 대학의 SCImago 연구팀과 미국 인디애나 대학의 Borner 교수팀이 활발히 연구 결과를 발표하고 있다. 이들은 자신들이 만들어 발표하고 있는 지도를 과학 지도 또는 사이언토그램이라고 부르며, 이에 관련된 활동을 과학지도학(scientography)이라고 하였다. 기존의 광역 과학 지도는 대부분 학술 논문 사이의 인용 분석에 근거하여 제작되었으나, 국내 학술 논문에 대한 인용 데이터베이스는 아직 미비한 상태이다. 따라서 이 연구에서는 국내의 광역 과학 지도를 만들기 위해서 학술진흥재단에 신청된 과제 제안서의 텍스트를 활용하였다. 학문 분야 사이의 연결 정보를 네트워크로 표현하는 수단으로 널리 사용되고 있는 패스파인더 네트워크(PFNet) 알고리즘으로 광역 과학 지도를 생성한 후, 이의 대안으로 개발된 클러스터링 기반 네트워크(CBNet) 알고리즘으로 다시 지도를 생성하였다. 최종적으로 두 지도에 나타난 상반된 관점을 통합하도록 CBNet 지도를 수정하여 국내 광역 과학 지도를 제시하였다.

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.

중첩된 버킷을 사용하는 다차원 히스토그램에 대한 개선된 알고리즘 (An Improved Algorithm for Building Multi-dimensional Histograms with Overlapped Buckets)

  • 문진영;심규석
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제30권3호
    • /
    • pp.336-349
    • /
    • 2003
  • 히스토그램은 최근들어 많은 관심을 끌고 있다. 히스토그램은 주로 상용 데이타베이스 관리 시스템에서 질의 최적화를 위해 속성의 값에 대한 데이타 분포를 추정하는데 사용되었다. 최근에는 근사 질의와 스트림 데이타에 대한 연구 분야에서 히스토그램에 대한 관심이 커지고 있다. 관계형 데이타베이스에서 두 개 이상의 속성에 대한 결합 데이타 분포를 근사시키는 가장 간단한 방법은 각 속성의 데이타 분포가 결합 데이타 분포에 독립적이라고 가정하는 속성 값 독립(Attribute Value Independence: AVI) 가정하 에서 각각의 속성에 대해서 히스토그램을 만드는 것이다 그러나 실제 데이타에서 이 가정은 잘 맞지 않는다. 따라서 이 문제를 해결하기 위해서 웨이블릿, 랜덤 샘플링, 다차원 히스토그램과 같은 기법들이 제안되 었다. 그 중에서 GENHIST는 실수형 속성에 대한 데이타 분포를 근사시키기 위해 고안된 다차원의 히스토그램이다. GENHIST는 데이타 분포를 좀 더 효과적으로 근사시키기 위해서 중첩되는 버킷을 사용한다. 본 논문에서는 SSE(Sum Squared Error)를 최소화시키는 중첩되는 버킷들의 최적 빈도를 결정하는 OPT 알고리즘을 제안한다. 처음에 GENHIST에 의해 중첩되는 버킷으로 구성되는 히스토그램을 만든 후에 OPT 알고리즘에 의해서 각 버킷의 빈도를 다시 계산해서 GENHIST를 개선시킬 수 있다. 실험 결과는 OPT 알고리즘이 GENHIST에 의해 만들어진 히스토그램의 정확도를 크게 개선시킴을 보여준다.

분절 특징 HMM을 이용한 영어 음소 인식 (English Phoneme Recognition using Segmental-Feature HMM)

  • 윤영선
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권3호
    • /
    • pp.167-179
    • /
    • 2002
  • 본 논문에서는 여러 프레임 특징으로 표현되는 분절 특징(segmental feature) 표현 방법을 제안하고, HMM 개념 위에서 음향학적 모델과 그 알고리즘을 개발하여 HMM의 약점으로 지적되는 독립관측 가정을 완화시키고자 한다. 제안된 특징 표현은 단일 프레임 특징이 음성 신호의 시간적 동적 특성 (temporal dynamics)을 제대로 표현하지 못하기 때문에, 여러 프레임을 이용하여 음성 특징을 표현하도록 한다. 분절 특징은 다항식의 회귀 함수(polynomial regression function)에 의하여 관측 벡터의 궤적으로 표현되고, 이 특징을 패턴 분류에 사용하기 위하여 음성 신호의 궤적을 효과적으로 표현하는 분절 HMM(segmental HMM)을 이용한다. SHMM은 상태에서의 관측 확률을 외적 분절 변이와 내적 분절 변이로 세분하며, 외적 분절 변이는 장기적인 변화를, 내적 분절 변이는 단기적인 변화를 나타낸다. 음향학적 모델에서 분절 특성을 고려하기 위하여 외적 분절 변이는 분절의 확률 분포로 표현하고, 내적 분절 변이는 궤적의 추정 오차로 표현하도록 SHMM을 수정한 분절 특징 HMM(SFHMM; segmental-feature HMM)을 제안한다. SFHMM에서는 분절의 관측 확률을 분절 우도와 궤적의 추정 오차의 관계로써 표현하며, 추정오차는 특정 상태에서의 분절의 우도에 대한 가중치로 고려될 수 있다. 제안된 방법의 유효성과 분절 특징의 특성을 살펴보기 위하여 TIMIT 자료를 이용하여 몇 가지 실험을 하였다. 이들 실험 결과에서, 제안된 방법이 기존의 HMM보다 매개 변수가 많더라도, 성능의 향상과 제안된 특징이 유연하고 정보를 많이 가진다는 점에서 의미가 있다고 하겠다.

위성영상자료를 활용한 도시성장변화에 관한 연구 (A Study on the Urban Growth Change using Satellite Imagery Data)

  • 김윤수;김정환;정응호;류지원
    • 한국지리정보학회지
    • /
    • 제5권2호
    • /
    • pp.81-90
    • /
    • 2002
  • 원격탐사는 상대적으로 적은 비용으로 넓은 지역에 대해 최신의 정보를 광범위하게 제공하며 지리정보의 갱신 및 도시변화 관찰에 있어 전통적인 방법(실측, 사진측량 등)에 비해 커다란 장점을 지니고 있으나, 현재까지는 공간 해상도의 한계로 인해 제한된 분야에서만 활용되어 왔으나 공간해상도 1m급의 위성영상이 상용화되고 있는 현 시점에서 위성영상의 활용방법에 대한 연구가 매우 시급하다 할 것이다. 본 연구의 목적은 다시기 위성영상을 이용해 도시지역의 성장변화를 모니터링 할 수 있는 방법을 고찰하는 것이다. 즉, 특정년도의 영상에서 추출하고자 하는 특정지표요소의 분광특성을 이용하여 개개 지표요소가 픽셀에서 차지하는 비율을 SMA알고리즘을 적용하여 개개 지표요소의 분류영상을 생성하여, 도시지역을 추출하고, 이 방법을 다시기 영상에 적용하여 변화가 일어난 지역을 추출하는 것이다. 이러한 방법으로 도시지역의 성장변화를 관찰하는 알고리즘 연구와 도시성장변화를 모니터링 하는 연구에 원격탐사자료의 활용가능성을 제시하고자 한다.

  • PDF

클러스터링과 차원축약 기법을 통합한 영상 검색 시스템 (Combined Image Retrieval System using Clustering and Condensation Method)

  • 이세한;조정원;최병욱
    • 전자공학회논문지CI
    • /
    • 제43권1호
    • /
    • pp.53-66
    • /
    • 2006
  • 본 논문에서는 전체 차원으로 데이터베이스 내의 모든 영상에 대해 순차적인 검색을 했을 때의 상세 검색 결과와 동일한 적합성을 유지하면서 검색 속도를 훨씬 더 향상시킬 수 있는 통합 검색 시스템을 제안한다. 통합 검색 시스템은 적합성을 유지하는 서로 다른 두 독립적인 시스템이 병합되어 있다. 하나는 특징 벡터 차원 축약을 이용한 2단계 검색 시스템이고 나머지 하나는 이진 트리 클러스터링을 이용한 2단계 검색 시스템이다. 각각의 방법은 1단계에서 상세 검색에서의 검색 결과를 항상 포함하는 후보 영상들을 추출하고, 추출된 후보 영상들을 대상으로 2단계 검색에서 전체 차원으로 재 검색을 한다 그러므로 각 방법과 통합 검색 방법은 모두 상세 검색을 수행했을 때와 동일한 검색 결과를 얻게 된다. 특징 벡터 차원 축약을 이용한 2단계 검색 방법은 Cauchy- Schwartz 부등식의 성질을 이용하여 특징 벡터를 차원 축약하여 검색에 사용하는 방법이다. 이때 전체 검색 시간을 최소로 하는 최적 차원 축약율이 존재하게 되고, 이를 후보 영상 추출을 위한 1차 검색에 적용하게 된다. 이진 트리 클러스터링을 이용한 2단계 검색 방법은 재귀적인 2-means 클러스터링을 통해 각 클러스터의 반경이 동일하게 동적으로 분할하는 방법이다. 동일한 적합성 유지를 위해 유사도 기준이 보정된 질의를 통해 1단계 검색에서 후보 클러스터를 추출하고, 2단계 검색에서 후보 클러스터 내의 영상을 대상으로 최종 결과 영상들을 얻게 된다. 통합 검색 방법은 위의 두 검색 방법을 통합한 것으로 서로 독립적인 두 방법을 동시에 적용함으로써 검색 시스템의 성능을 훨씬 더 향상시킬 수 있다 제안하는 방법은 상세 검색의 적합성을 유지하면서도 검색 속도를 훨씬 더 향상시킬 수 있음이 실험을 통해 입증되었다.