• 제목/요약/키워드: DataMining

검색결과 4,045건 처리시간 0.034초

특허문서 필드의 기능적 특성을 활용한 IPC 다중 레이블 분류 (IPC Multi-label Classification based on Functional Characteristics of Fields in Patent Documents)

  • 임소라;권용진
    • 인터넷정보학회논문지
    • /
    • 제18권1호
    • /
    • pp.77-88
    • /
    • 2017
  • 최근 지식과 정보가 가치를 생산하는 지식기반사회로 접어들면서 지식재산권의 대표적인 형태인 특허에 대한 중요성이 매우 높아지고 있으며 출원되는 특허의 양도 매년 증가하고 있다. 방대한 양의 특허정보를 효과적으로 이용하기 위해서 특허문서를 그 발명의 기술적 주제에 따라 적절하게 분류하는 것이 필요하며 이를 위해 IPC(International Patent Classification)가 주로 사용되고 있다. 현재 주로 사람의 손으로 이뤄지는 특허문서의 IPC 분류과정의 효율성을 높이기 위하여 다양한 데이터마이닝과 기계학습 알고리즘을 기반으로 IPC 자동분류에 관한 연구들이 수행되어 왔다. 하지만 기존의 IPC 자동분류에 관한 연구의 대부분은 특허문서의 구조적 특징과 같은 특허문서 고유의 데이터 특성에 대한 고려보다는 다양한 기계학습 알고리즘을 특허문서로 적용하는 것에 초점을 맞춰왔다. 이에 본 논문에서는 IPC 자동분류를 위해 특허문서의 특징과 구조적 필드의 역할을 기반으로 특허문서 분류에 영향을 끼치는 두 가지 필드, 기술분야 및 배경기술 필드의 활용을 제안한다. 그리고 특허문서가 동시에 다수의 IPC 분류코드를 가지는 점을 반영하여 다중 레이블 분류(multi-label classification) 모델을 구축한다. 또한 IPC 다중 레이블 분류의 실제 현장에서의 적용 가능성 확인을 위해 630개의 범주를 가지는 IPC 서브클래스 레벨까지 분류 가능한 수법을 제안한다. 이를 위해 국내에서 등록된 564,793건의 특허문서를 대상으로 특허문서의 구조적 필드의 영향을 확인하기 위한 IPC 다중 레이블 분류 실험을 수행하였고, 그 결과 제목, 요약, 청구항, 기술분야 및 배경기술 필드를 활용한 실험에서 87.2%의 싱글매치 정확도를 얻었다. 이를 통해 기술분야 및 배경기술 두 필드가 IPC 서브클래스 레벨까지의 다중 레이블 분류의 정확도를 향상시키는데 중요한 역할을 하고 있음을 확인하였다.

지하 공동의 탐지와 모니터링을 위한 고정밀 중력탐사 (A Microgravity for Mapping and Monitoring the Subsurface Cavities)

  • 박영수;임형래;임무택;구성본
    • 지구물리와물리탐사
    • /
    • 제10권4호
    • /
    • pp.383-392
    • /
    • 2007
  • 지하 공동은 토지의 이용과 개발을 제한할 뿐 아니라 안전과 환경에 심각한 우려를 준다. 우리나라는 석회암이 널리 분포하고 폐광산이 많으며 도심이 확장되고 토지의 개발이 활발하여, 지하 공동에 의한 지반 안전과 환경 보존 문제를 안고 있다. 전남 무안군 덕보들에 한국지질자원연구원에서 마련한 물리탐사 실험장에서 지하 공동의 탐지와 모니터링을 위한 고정밀 중력탐사를 하였다. 중력은 약 30 m 간격의 논둑길을 따라 5 m 간격으로 모두 800여 측점에서 AutoGrav CG-3 중력계로 측정하였으며, 측점의 절대적 위치 오차는 수 mm 이하로 유지하였다. 중력 측선은 MS (minimum support) 역산으로 밀도 분포를 작성하였으며, 고분해능 3차원 중력 역해의 비유일성을 줄이기 위하여 Euler 디컨벌루션의 해를 제한 조건으로 이용하는 역산 방법을 고안하였다. 역산에 의하여 작성한 밀도 분포는 잔여 중력 분포와 전체적으로 잘 일치하였으며, 특히 공동과 관련된 것으로 예상되는 3곳의 중력 이상대의 밀도 분포 형태, 즉 공동의 위치 뿐 아니라 공동형태와 발달 양상을 잘 보여주었다. 이러한 해석 결과는 시추 주상도와 매우 잘 일치하였다. 탐사 실험장의 진입로에서 그라우팅을 전후하여 시간차 중력 모니터링을 하였다. 탐사 조건에 의한 불일치는 기준점의 관측 중력을 비교하여 조정하였다. MS 역산으로 작성한 그라우팅 전, 후의 밀도 분포를 비교하여 그라우팅의 효과를 검토하였다. 이 현장 사례를 통하여 ${\mu}Gal$ 수준의 정밀도와 정확도의 고정밀 중력탐사는 지하 공동을 탐지할 뿐 아니라 공동의 분포와 발달 양상을 확인하는 가장 직접적이고 효과적인 수단이 됨을 보여주었다. 또한, 시간차 중력 모니터링은, 여러 가지 오차 요인들이 있지만, 시간의 경과에 따른 지하 밀도 분포의 변화를 관측하는 데 효과적임을 보여주었다.

브랜드 개성 효과: 트위터 상의 브랜드 개성 전달이 온라인 커뮤니티 참여에 미치는 영향 (The Brand Personality Effect: Communicating Brand Personality on Twitter and its Influence on Online Community Engagement)

  • 루스 안젤리 크루즈;이홍주
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.67-101
    • /
    • 2014
  • 새로운 기술의 활용은 고객과의 관계를 맺기위한 기업들의 마케팅 전략을 변모시켜왔다. 새로운 기술 중에서 소셜 미디어는 기업들이 온라인 고객들에게 다가가기 위한 도구이며, 유명한 소셜 미디어 사이트 중의 하나는 마이크로 블로깅 플랫폼인 트위터이다. 매일 5억건이상의 트윗이 발생하기때문에 연구자들에게는 풍부한 데이터의 원천이며, 기업들에겐 매력적인 마케팅 채널이다. 그럼에도 불구하고 효과적인 트위터 활용전략을 수립하는 것이 어려우며, 이는 적절한 트위터 활용에 대한 이론적인 또는 실증적인 검증이 이루어지지 않았기 때문이다. 본 연구는 기업들이 마케팅 채널로서의 트위터를 어떻게 효과적으로 활용할 수 있는지에 대한 실증적인 근거를 브랜드 개성과 브랜드 관여를 중심으로 연구하여 제공하고자 한다. 본 연구는 Aaker의 브랜드 개성에 대한 연구에서 제시한 브랜드 개성 척도를 활용하여 트위터 메시지가 브랜드 개성을 띄고 있는지와 이에 따른 고객들의 참여와 반응을 분석하고자 한다. 또한, 제품의 관여도에 따라서 조절효과가 존재하는지도 분석하였다. 23개 브랜드의 8주간의 트위터 계정의 포스팅을 수집하였으며, 오피니언 마이닝을 통하여 연구 가설을 검증하였다. 구체적인 본 연구의 목적은 첫째로 마케팅 연구에서 제시된 브랜드 개성의 개념이 소셜 미디어인 트위터에도 적용이 가능한지 분석하는 것이다. 둘째는 오프라인 브랜드 개성과 온라인 브랜드 개성간의 일치여부와 소셜 미디어 브랜드 커뮤니티의 활성화간의 관계를 밝히고자 한다. 마지막으로, 제품의 관여도에 따라 온라인/오프라인 브랜드 개성의 일치도가 조절효과를 갖는지를 분석하고자 한다.

소셜미디어에 나타난 풍력발전시설의 경관 인식 연구 (A Study on the Landscape Cognition of Wind Power Plant in Social Media)

  • 우경숙;서주환
    • 한국조경학회지
    • /
    • 제50권5호
    • /
    • pp.69-79
    • /
    • 2022
  • 본 연구는 최근 신재생에너지원으로 관광, 여행 등의 목적을 가지며 관광자원의 역할을 할 수 있는 풍력발전시설의 경관 인식을 파악하였다. 이에 지역별로 방문객이 경험한 풍력발전시설의 경관과 관련된 소셜미디어 데이터를 분석하였다. 분석 결과, 풍력발전시설의 경관을 인식할 때 연구대상지에서 공통적으로 풍력발전시설의 규모, 조망점과 풍력발전시설 간의 거리, 조망점에서 풍력발전시설을 볼 때 시각적 개방성, 풍력발전시설이 위치하고 있는 지형에 따라 달라지는 것을 알 수 있다. 또한, 풍력발전시설의 선호는 풍력발전시설의 형태와 주변경관을 파악할 수 있는 장소인 평지나 바다에 설치되어 있는 곳을 더 좋은 경관이라고 인식하고 있다. 특이한 점으로 경관에 대한 부정적인 키워드는 강원도 태백 가덕산, 태백 매봉산, 태기산과 경상도 경주 풍력발전시설에서 나타났다. 부정적인 키워드는 풍력발전시설을 가까이 조망했을 때 조망각이 높아 느껴지는 압도적인 크기와 산의 능선이 함께 보이는 경관에서 심리적 위압감을 느끼고 있음을 알 수 있다. 반면, 평지나 바다가 보이는 경관의 풍력발전시설에서는 긍정적인 경관 형용사가 도출되어 방문객은 경관의 스카이라인이 산 능선과 겹쳐서 보이거나 너무 가까이에서 풍력발전시설을 바라볼 때보다 평지나 바다에서 경관의 시각량이 충분히 확보될 때 그 장소를 대표할 만한 상징적인 요소라고 인식하고 있음을 알 수 있다. 본 연구는 풍력발전시설을 경험한 방문객의 의견을 토대로 경관 인식을 분석하였다. 그러나 풍력발전시설은 설치되는 권역별로 경관특성이 다르고, 시점, 관찰자 등 변수가 많아 연구결과를 일반화시키기 어려운 한계가 있다. 최근 풍력발전시설 조성 시 발생하는 경관훼손이 주요 이슈가 되고 있고, 국내에는 풍력발전시설의 경관을 평가할 수 있는 방법이 미흡하다. 이에 풍력발전시설의 경관을 평가할 시 풍력발전시설의 규모, 풍력발전시설이 설치된 지역 고유의 자연적 특성, 풍력발전시설과 조망점과의 거리가 중요한 구성요소로 나타난 것은 주목할 사항이라 판단된다. 또한, 풍력시설은 보전해야 할 자연환경에 설치되는 시설로 추후 경관적 관점에서 풍력발전시설과 주변 환경을 바라보는 경관의 연구가 필요하다.

트위터에서의 COVID-19와 관련된 반시민성 주제 탐색: 혐오 대상 및 키워드 분석 (Investigating Topics of Incivility Related to COVID-19 on Twitter: Analysis of Targets and Keywords of Hate Speech)

  • 김규리;오찬희;주영준
    • 정보관리학회지
    • /
    • 제39권1호
    • /
    • pp.331-350
    • /
    • 2022
  • 본 연구는 코로나바이러스감염증-19 (이하 코로나19)로 인해 생겨난 코로나19 반시민성 주제와 코로나19 혐오 정서를 파악하기 위해 소셜미디어 중 하나인 트위터의 코로나19 관련 게시물을 분석하였다. 2019년 12월 1일부터 2021년 8월 31일까지 21개월 동안 작성된 코로나19 관련 혐오 대상별(지역, 공공시설 혐오, 특정 인구 집단 혐오, 종교 혐오) 게시물 수집 및 전처리를 진행하여 총 63,802개의 게시물을 분석하였다. 혐오 대상별 빈도 분석, 다이나믹 토픽 모델링, 키워드 동시 출현 네트워크 분석 기법을 통하여 혐오 대상별 반시민성 주제와 혐오 키워드를 파악하였다. 첫째, 빈도 분석 결과, 지역, 공공시설 혐오는 상대적으로 증가하는 추세를 보이고 특정 인구 집단과 종교 혐오는 상대적으로 감소하는 추세를 확인할 수 있었다. 둘째, 다이나믹 토픽 모델링 분석 결과, 지역, 공공시설 혐오는 '대구, 경북지방 혐오', '지역 간 혐오', '공공시설 혐오'로 나타났고, 특정 인구 집단 혐오는 '중국 혐오', '바이러스 전파자', '실외(야외)활동 제재'로 나타났으며, 종교 혐오는 '신천지', '기독교', '종교 내 감염', '방역 의무 거부', '확진자 동선 비난'으로 나타났다. 셋째, 키워드 동시 출현 네트워크 분석 결과, 지역, 공공시설 혐오(코로나, 대구, 확진자, 신천지, 경북, 지역), 특정 인구 집단 혐오(코로나바이러스, 우한폐렴, 우한, 중국, 중국인, 사람, 입국, 금지), 종교 혐오(신천지, 코로나, 교회, 대구, 확진자, 감염) 등을 핵심 키워드로 확인할 수 있었다. 본 연구는 소셜 미디어를 활용한 국내 코로나19 혐오 대상 및 키워드 파악을 통해 코로나19 관련한 대중의 반시민성 여론을 파악하고자 하였다. 특히 기존의 선행연구에서 시도하지 않았던 주제인 코로나19 관련 혐오에 데이터 마이닝기법을 이용하여 소셜 미디어에서 표출하는 대중의 반시민성 주제와 혐오 정서 탐색은 대중들의 여론을 파악하는 것이 의의가 있다. 더불어 본 연구 결과는 포스트 코로나 시대를 대비하는 문화적 소통 방안의 제도 및 정책 수립 기여를 위한 기본 자료에 기초할 수 있다는 점에서 실질적 함의를 시사한다.

마켓 인사이트를 위한 상품 리뷰의 다차원 분석 방안 (Multi-Dimensional Analysis Method of Product Reviews for Market Insight)

  • 박정현;이서호;임규진;여운영;김종우
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.57-78
    • /
    • 2020
  • 인터넷의 발달로, 소비자들은 이커머스에서 손쉽게 상품 정보를 확인한다. 이때 활용되는 상품 리뷰는 사용자 경험을 토대로 작성되어 구매의사결정의 효율성을 높일 뿐만 아니라 상품 개발에 도움을 주기도 한다. 하지만, 방대한 양의 상품 리뷰에서 관심있는 평가차원의 세부내용을 파악하는 데에는 많은 시간과 노력이 소비된다. 예를 들어, 노트북을 구매하려는 소비자들은 성능, 무게, 디자인과 같은 평가차원에 대해 각 차원별로 비교 상품의 평가를 확인하고자 한다. 따라서 본 논문에서는 상품 리뷰에서 다차원 상품평가 점수를 자동적으로 생성하는 방안을 제안하고자 한다. 본 연구에서 제시하는 방안은 크게 2단계로 구성된다. 사전준비 단계와 개별상품평가 단계로, 대분류 상품군 리뷰를 토대로 사전에 생성된 차원분류모델과 감성분석모델이 개별상품의 리뷰를 분석하게 된다. 차원분류모델은 워드임베딩과 연관분석을 결합함으로써 기존 연구에서 차원과 단어들의 관련성을 찾기 위한 워드임베딩 방식이 문장 내 단어의 위치만을 본다는 한계를 보완한다. 감성분석모델은 정확한 극성 판단을 위해 구(phrase) 단위로 긍부정이 태깅된 학습데이터를 구성하여 CNN 모델을 생성한다. 이를 통해, 개별상품평가 단계에서는 구 단위의 리뷰에 준비된 모델들을 적용하고 평가차원별로 종합함으로써 다차원 평가점수를 얻을 수 있다. 본 논문의 실험에서는 대분류 상품군 리뷰 약 260,000건으로 평가모델을 구성하고, S사와 L사의 노트북 리뷰 각 1,011건과 1,062건을 실험데이터로 활용한다. 차원분류모델은 구로 분해한 개별상품 리뷰를 6개 평가차원으로 분류했고, 기존 워드임베딩 방식보다 연관분석을 결합한 모델의 정확도가 13.7% 증가했음을 볼 수 있었다. 감성분석모델은 문장보다 구 단위로 학습한 모델이 평가차원을 면밀히 분석함으로써 29.4% 더 높은 정확도를 보임을 확인했다. 본 연구를 통해 판매자, 소비자 모두가 상품의 다차원적 비교가 가능하다는 점에서 구매 및 상품 개발에 효율적인 의사결정을 기대할 수 있다.

협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템 (SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering)

  • 조용민;남기환
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.77-110
    • /
    • 2017
  • 최근 인터넷 기반의 웹 및 모바일 기기를 통한 소비 패턴의 다양화와 개성화가 급진전됨에 따라 전통적 유통채널인 오프라인 매장의 효율적 운영이 더욱 중요해졌다. 매장의 매출과 수익 모두를 제고하기 위해 매장은 소비자에게 가장 매력적인 상품을 적시에 공급-판매 해야 하는데 많은 상품들 중에서 어떤 SKU를 취급하는 것이 판매 확률을 높이고 재고 비용을 낮출 수 있는지에 대한 연구가 부족한 실정이다. 특히, 여러 지역에 걸쳐 다수의 오프라인 매장을 통해 상품을 판매하는 기업의 경우 고객에게 매력적인 적절한 SKU를 추천 받아 취급할 수 있다면 매장의 매출 및 수익률 제고에 도움이 될 것이다. 본 연구에서는 개인화 추천에 이용되어 왔던 협업 필터링과 하이브리드 필터링 등의 추천 시스템(Recommender System)을 국가별, 지역별로 복수의 판매 매장을 통해 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하였다. 각 매장의 취급 품목별 구매 데이터를 활용하여 각 매장 별 유사성(Similarity)을 계산하고 각 매장의 SKU별 판매 이력에 따라 협업 필터링을 하여 최종적으로 매장에 개별 SKU를 추천하였다. 또한 매장 프로파일 데이터를 활용하여 주변수 분석 (PCA : Principal Component Analysis) 및 군집 분석(Clustering)을 통하여 매장을 4개의 군집으로 분류한 뒤 각 군집 내에서 협업 필터링을 적용한 하이브리드 필터링 방식으로 추천 시스템을 구현하고 실제 판매 데이터를 바탕으로 두 방식의 성능을 측정하였다. 현존하는 대부분의 추천 시스템은 사용자에게 영화, 음악 등의 아이템을 추천하는 방식으로 연구가 진행되어 왔고 실제로 산업계에서의 적용 또한 개인화 추천 시스템이 주류를 이루고 있다. 그 동안 개인화 서비스 영역에서 주로 다루어져 왔던 이러한 추천 시스템을 동종 브랜드를 취급하는 유통 기업의 매장 단위에 적용하여 각 매장의 취급 SKU를 추천하는 방식에 대한 연구는 거의 이루어지지 않고 있는 실정이다. 기존 추천 방법론의 추천 적용 대상이 '개인의 영역이었다면 본 연구에서는 국가별, 지역별로 복수의 판매 매장을 통해 개인의 영역을 넘어 매장의 영역으로 확대하여 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하고 있다. 또한 기존의 추천시스템은 온라인에 한정되었다면 이를 오프라인으로 활용 범위를 넓히고, 기존 개인을 기반으로 분석을 하는 것보다 매장영역으로 확대 적용하기에 적합한 알고리즘을 개발하기 위해 데이터마이닝 기법을 적용하여 추천 방법을 제안한다. 본 연구의 결과가 갖는 의의는 개인화 추천 알고리즘을 동일 브랜드를 취급하는 복수의 판매 매장에 적용하여 의미 있는 결과를 도출하고 실제 기업을 대상으로 시스템으로 구축하여 활용할 수 있는 구체적 방법론을 제시했다는 데에 있다. 개인화 영역을 위주로 이루어졌던 기존의 추천 시스템과 관련한 학계의 연구 영역을 동종 브랜드를 취급하는 기업의 판매 매장으로 확장시킨 첫 시도라는 데에도 의미가 있다. 2014년 03주차 ~ 05주차 전(全) 매장 판매 수량 실적 Top 100개 SKU로 추천의 대상을 한정하여 협업 필터링과 하이브리드 필터링 방식으로 52개 매장 별로 취급 SKU를 추천하고, 추천 받은 SKU에 대한 2014년 06주차 매장별 판매 실적을 집계하여 두 추천 방식의 성과를 비교하였다. 두 추천 방식을 비교한 이유는 본 연구의 추천 방법이 기존 추천 방식 보다 높은 성과를 입증하기 위해 단순히 오프라인에 협업필터링을 적용한 것을 기준 모델로 정의하였다. 이 기준 모델에 오프라인 매장 관점의 특성을 잘 반영한 본 연구 모델인 하이브리드 필터링 방법과 비교 함으로써 성과를 입증한다. 연구에서 제안한 방식은 기존 추천 방식보다 높은 성과를 나타냈으며, 이는 국내 대기업 의류업체의 실제 판매데이터를 활용하여 입증하였다. 본 연구는 개인 수준의 추천시스템을 그룹수준으로 확장하여 효율적으로 접근하는 방법을 이론적인 프레임 워크를 만들었을 뿐 아니라 실제 데이터를 기반으로 분석하여 봄으로써 실제 기업들이 적용해 볼 수 있다는 점에서 연구의 가치가 크다.

고해상탄성파탐사자료에 의한 한국남동대륙붕의 퇴적사 및 조구조운동 (Sedimentary History and Tectonics in the Southeastern Continental Shelf of Korea based on High Resolution Shallow Seismic Data.)

  • 민건홍;박용안
    • 한국석유지질학회지
    • /
    • 제5권1_2호
    • /
    • pp.1-8
    • /
    • 1997
  • 한국남동해 대륙붕에서 획득된 고해상탄성파탐사자료의 탄성파층서적 해석에 의하면 본 연구해역의 퇴적층은 서로 다른 4개의 퇴적층, 즉 하부로부터 퇴적층 D,퇴적층 C,퇴적층 B 및 퇴적층 A로 구성된다. 양산단층 연장부의 서쪽에 발달하는 퇴적층 D는 분지가 침강함에 따라 천해환경에서 퇴적된 것이나, 동쪽에 발달하는 것은 사면전면 충진형태로 형성되었다. 퇴적과 동시에 경동조구조운동이 일어나 육지쪽에 발달하는 사면전면 충진 퇴적층은 침식되어 인접한 사면에 퇴적되었다. 이 조구조운동은 울릉분지의 닫힘과 수반되어 일어난 것으로 보인다. 양산단층 연장부의 서쪽에 발달하는 퇴적층 C는 저해수면 하성퇴적물, 해침퇴적물, 그리고 고해수면 해성퇴적물이 겹쳐 쌓여서 형성된 것으로 추측된다. 동쪽에 발달하고 있는 퇴적층 C는 대륙붕단에서 퇴적된 것으로 해석되며, 이러한 작용으로 대륙붕단 외해로 전진하게 되었다. 퇴적층 C가 형성되는 동안에도 경동조구조운동은 계속되었으나, 퇴적층 D가 형성되는 동안에 있었던 것보다는 약하였다. 퇴적층 B가 형성되기 시작하면서 경동조구조운동은 멈추고, 선근원에서 점근원의 퇴적이 일어나기 시작하였다. 연구지역에 발달하는 본 퇴적층은 고해수면퇴적계, 저해수면퇴적계 그리고 해침퇴적계로 구분된다. 고해수면퇴적계는 욕지도주위에 부분적으로 보존되어 있으며, 저해수면퇴적계는 대한해곡에 비교적 잘 발달되어 있다. 해침퇴적계는 욕지도 및 거제도 남쪽앞 바다에 잘 보존되어 있다. 경동조구조운동이 멈추면서, 울릉분지의 닫힘작용에 의한 압축력은 주향단층들에 의해 해소되는 것으로 보인다./투스칼루사(Tuscaloosa) 사암층, 테일러(Taylor) 나바로(Navarro) 사암층과 오스틴(Austin) 백악 및 탄산염암층이 있다. 이 저류암층에 탄화수소를 공급했던 근원암층으로는 경사방향 하부의 셰일층이, 그리고 덮개암층은 경사방향 상부의 계일층이 그 역할을 담당했던 것으로 해석된다. 뗘악기 하부와 상부 퇴적층의 주요 트랩(trap)으로는 완만한 기둥형(pillow)으로부터 복잡한 다이아피어(diapir) 형태의 암염층 관련 배사구조와 하단 단층블록위에 놓여 있으며 롤오버(rollover) 배사구조를 갖는 성장단층이 있다. 투수 장애(permeability barrier), 상부 경사방향으로 첨멸하는 사암체(up-dip pinch-out sand body깥 침식부정합면(unconformity truncation)도. 걸프만 석유부존에 중요한 역할을 한 트랩들이다. 백악기의 주요한 저류암층들은 범세계 해수면곡선의 하강시기와 잘 일치하고 있는데 이는 백악기동안 형성된 걸프만의 퇴적층서가 범세계 해수면곡선을 전반적으로 잘 반영하고 있음을 의미한다. 즉 퇴적작용을 주로 지배하는 세 즌요 변수인 지구조적인 분지의 침강운동,퇴적물의 공급,해수면 변동오그÷중에서 해수면 변동요소가 이 시기동안 가장 중요한 역할을 했음을 의미한다.

  • PDF

한중 4차산업혁명 기술교류 및 효과에 대한 실증연구: 기업 소셜 네트워크 분석 중심으로 (The Empirical Study on the Effect of Technology Exchanges in the Fourth Industrial Revolution between Korea and China: Focused on the Firm Social Network Analysis)

  • 저우전신;손권상;황윤민;권오병
    • 한국전자거래학회지
    • /
    • 제25권3호
    • /
    • pp.41-61
    • /
    • 2020
  • 중국의 4차 산업혁명 첨단기술 개발 및 사업화 속도가 빠르게 진행되며 효과적인 한중 기업 간 기술교류가 한국의 중장기 산업발전에 더욱 중요해지고 있다. 하지만 아직까지 한중 기업 간 기술교류가 어떻게 진행되는지와 그 효과에 대한 실증 연구가 부족하다. 이에 본 연구는 4차 산업혁명 관련 한중 기술교류 현황 및 효과에 대해 2018년부터 2020년 3월까지 뉴스에 소개된 한중 기업 기술교류 및 협력 기사의 텍스트 마이닝 데이터 기반으로 소셜 네트워크 분석을 진행하고 네트워크 중심성의 성과영향 회귀분석을 진행했다. 분석 결과 국내 전자 대기업들이 대부분 중심성 지표에서 높은 중심성을 보이며 중국 기업 및 기관들과 네트워킹을 활발히 진행하고 있다. 국내 통신사들이 매개 중심성과 부분그래프에서 높은 중심성을 국내 인터넷 서비스 업체와 방송 컨텐츠 업체들이 높은 고유벡터 중심성을 나타냈다. 또한 한국기업보다 중국기업이 높은 매개 중심성을 제조기업보다 서비스기업이 높은 근접 중심성을 보였다. 이러한 네트워크 중심성은 회귀분석결과 기업성과에 긍정적인 영향을 미쳤다. 본 연구는 4차 산업혁명 분야에 집중하여 한중간 협력 현황을 분석한 최초 연구라는 의미가 있으며, 학술적으로 글로벌 기업 협력에 있어 소셜 네트워크 분석 기반 실증 연구 방향을 제시하고 실무적으로 기업이나 정부의 한중 기술 협력 방향 설정에 있어 네트워크 분석 기반 가이드라인을 제시하였다.

영화 리뷰 감성분석을 위한 텍스트 마이닝 기반 감성 분류기 구축 (A Study on Analyzing Sentiments on Movie Reviews by Multi-Level Sentiment Classifier)

  • 김유영;송민
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.71-89
    • /
    • 2016
  • 누구나 본인이 사용한 제품이나, 이용한 서비스에 대한 후기를 자유롭게 인터넷에 작성할 수 있고, 이러한 데이터의 양은 점점 더 많아지고 있다. 감성분석은 사용자가 생성한 온라인 텍스트 속에 내포된 감성 및 감정을 식별하기 위해 사용된다. 본 연구는 다양한 데이터 도메인 중 영화 리뷰를 분석 대상으로 한다. 영화 리뷰를 이용한 기존 연구에서는 종종 리뷰 평점을 관객의 감성으로 동일시하여 감성분석에 이용한다. 그러나 리뷰 내용과 평점의 실제적 극성 정도가 항상 일치하는 것은 아니기 때문에 연구의 정확성에 한계가 발생할 수 있다. 이에 본 연구에서는 기계학습 기반의 감성 분류기를 구축하고, 이를 통해 리뷰의 감성점수를 산출하여 리뷰에서 나타나는 감성의 수치화를 목표로 한다. 나아가 산출된 감성점수를 이용하여 리뷰와 영화 흥행 간의 연관성을 살펴보았다. 감성분석 모델은 지지벡터 분류기와 신경망을 이용해 구축되었고, 총 1만 건의 영화 리뷰를 학습용 데이터로 하였다. 감성분석은 총 175편의 영화에 대한 1,258,538개의 리뷰에 적용하였다. 리뷰의 평점과 흥행, 그리고 감성점수와 흥행과의 연관성은 상관분석을 통해 살펴보았고, t-검정으로 두 지표의 평균차를 비교하여 감성점수의 활용성을 검증하였다. 연구 결과, 본 연구에서 제시하는 모델 구축 방법은 나이브 베이즈 분류기로 구축한 모델보다 높은 정확성을 보였다. 상관분석 결과로는, 영화의 주간 평균 평점과 관객 수 간의 유의미한 양의 상관관계가 나타났고, 감성점수와 관객 수 간의 상관분석에서도 유사한 결과가 도출되었다. 이에 두 지표간의 평균을 이용한 t-검정을 수행하고, 이를 바탕으로 산출한 감성점수를 리뷰 평점의 역할을 할 수 있는 지표로써 활용 가능함을 검증하였다. 나아가 검증된 결론을 근거로, 트위터에서 영화를 언급한 트윗을 수집하여 감성분석을 적용한 결과를 살펴봄으로써 감성분석 모델의 활용 방안을 모색하였다. 전체적 실험 및 검증의 과정을 통해 본 연구는 감성분석 연구에 있어 개선된 감성 분류 방법을 제시할 수 있음을 보였고, 이러한 점에서 연구의 의의가 있다.