• Title/Summary/Keyword: Data-driven model

Search Result 680, Processing Time 0.024 seconds

Prediction of the remaining time and time interval of pebbles in pebble bed HTGRs aided by CNN via DEM datasets

  • Mengqi Wu;Xu Liu;Nan Gui;Xingtuan Yang;Jiyuan Tu;Shengyao Jiang;Qian Zhao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.339-352
    • /
    • 2023
  • Prediction of the time-related traits of pebble flow inside pebble-bed HTGRs is of great significance for reactor operation and design. In this work, an image-driven approach with the aid of a convolutional neural network (CNN) is proposed to predict the remaining time of initially loaded pebbles and the time interval of paired flow images of the pebble bed. Two types of strategies are put forward: one is adding FC layers to the classic classification CNN models and using regression training, and the other is CNN-based deep expectation (DEX) by regarding the time prediction as a deep classification task followed by softmax expected value refinements. The current dataset is obtained from the discrete element method (DEM) simulations. Results show that the CNN-aided models generally make satisfactory predictions on the remaining time with the determination coefficient larger than 0.99. Among these models, the VGG19+DEX performs the best and its CumScore (proportion of test set with prediction error within 0.5s) can reach 0.939. Besides, the remaining time of additional test sets and new cases can also be well predicted, indicating good generalization ability of the model. In the task of predicting the time interval of image pairs, the VGG19+DEX model has also generated satisfactory results. Particularly, the trained model, with promising generalization ability, has demonstrated great potential in accurately and instantaneously predicting the traits of interest, without the need for additional computational intensive DEM simulations. Nevertheless, the issues of data diversity and model optimization need to be improved to achieve the full potential of the CNN-aided prediction tool.

Mismatch of Perception and Data: Air Pollution, Medical Expenses, and Consumption in South Korea (관측 자료와 인지의 불일치: 대기 오염에 따른 의료 비용 및 소비 지출에 관한 분석)

  • Yun, Seong Do;Kim, Seung Gyu
    • Environmental and Resource Economics Review
    • /
    • v.29 no.2
    • /
    • pp.113-144
    • /
    • 2020
  • Throughout various data sources, it is widely observed that air quality in South Korea has become improved. Koreans, however, insist that their health status and economic burden due to worsened air quality get degenerated. This study aims to explain the mismatch between perception and measured data, air pollution-led medical expenses, and consumption behaviors in the economics perspectives. First, we demonstrated data-driven evidence of mismatch in the perceived severity of air pollution and its enhancement in measured data. Second, using the health demand model, we theoretically derived and empirically showed a co-rising relation between air pollution severity and medical expenses. Last, we analyzed that the perception led to increased defensive expenditures in consumption. This result implies the possibility of overestimation in air pollution impacts on socioeconomic losses and its possible reverse interpretation from increased social benefit after improved air quality. Our results recommend policy consideration to strengthen air quality standards, to support socially vulnerable groups regarding defensive expenditures, and to improve the accessibility and credibility of air pollution information.

Data-Driven Technology Portfolio Analysis for Commercialization of Public R&D Outcomes: Case Study of Big Data and Artificial Intelligence Fields (공공연구성과 실용화를 위한 데이터 기반의 기술 포트폴리오 분석: 빅데이터 및 인공지능 분야를 중심으로)

  • Eunji Jeon;Chae Won Lee;Jea-Tek Ryu
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.71-84
    • /
    • 2021
  • Since small and medium-sized enterprises fell short of the securement of technological competitiveness in the field of big data and artificial intelligence (AI) field-core technologies of the Fourth Industrial Revolution, it is important to strengthen the competitiveness of the overall industry through technology commercialization. In this study, we aimed to propose a priority related to technology transfer and commercialization for practical use of public research results. We utilized public research performance information, improving missing values of 6T classification by deep learning model with an ensemble method. Then, we conducted topic modeling to derive the converging fields of big data and AI. We classified the technology fields into four different segments in the technology portfolio based on technology activity and technology efficiency, estimating the potential of technology commercialization for those fields. We proposed a priority of technology commercialization for 10 detailed technology fields that require long-term investment. Through systematic analysis, active utilization of technology, and efficient technology transfer and commercialization can be promoted.

Changes in Teaching Practices of Elementary School Teachers in Scientific Modeling Classes: Focused on Modeling Pedagogical Content Knowledge (PCK) (과학 모델링 수업에서 나타난 초등 교사의 수업 실행 변화 -모델링 PCK를 중심으로-)

  • Uhm, Janghee;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.5
    • /
    • pp.543-563
    • /
    • 2020
  • This study explores how the teaching practices of two teachers changed during scientific modeling classes. It also aims to understand these changes in terms of the teachers' modeling pedagogical content knowledge (PCK) development. The study participants were two elementary school teachers and their fifth-grade students. The teachers taught eight lessons of scientific modeling classes about the human body. The data analysis was conducted for lessons 1-2 and 7-8, which best showed the change in teaching practice. The two teachers' teaching practices were analyzed in terms of feedback frequency, feedback content, and the time allocated for each stage of model generation, evaluation, and modification. Teacher A led the evaluation and modification stages in a teacher-driven way throughout the classes. In terms of feedback, teacher A mainly used answer evaluation feedback in lesson 1-2; however, in lesson 7-8, the feedback content changed to thought-provoking feedback. Meanwhile, teacher B mostly led a teacher-driven model evaluation and modification in lesson 1-2; however, in lesson 7-8, she let her students lead the model evaluation and modification stages and helped them develop models through various feedbacks. The analysis shows that these teaching changes were related to the development of modeling PCK components. Furthermore, the two teachers' modeling PCK differed in teaching orientation, in understanding the modeling stages, and in recognizing the value of modeling, suggesting the importance of these in modeling teaching practice. This study can help improve the understanding of modeling classes by revealing the relationship between teaching practices and modeling PCK.

Development of High-frequency Data-based Inflow Water Temperature Prediction Model and Prediction of Changesin Stratification Strength of Daecheong Reservoir Due to Climate Change (고빈도 자료기반 유입 수온 예측모델 개발 및 기후변화에 따른 대청호 성층강도 변화 예측)

  • Han, Jongsu;Kim, Sungjin;Kim, Dongmin;Lee, Sawoo;Hwang, Sangchul;Kim, Jiwon;Chung, Sewoong
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.5
    • /
    • pp.271-296
    • /
    • 2021
  • Since the thermal stratification in a reservoir inhibits the vertical mixing of the upper and lower layers and causes the formation of a hypoxia layer and the enhancement of nutrients release from the sediment, changes in the stratification structure of the reservoir according to future climate change are very important in terms of water quality and aquatic ecology management. This study was aimed to develop a data-driven inflow water temperature prediction model for Daecheong Reservoir (DR), and to predict future inflow water temperature and the stratification structure of DR considering future climate scenarios of Representative Concentration Pathways (RCP). The random forest (RF)regression model (NSE 0.97, RMSE 1.86℃, MAPE 9.45%) developed to predict the inflow temperature of DR adequately reproduced the statistics and variability of the observed water temperature. Future meteorological data for each RCP scenario predicted by the regional climate model (HadGEM3-RA) was input into RF model to predict the inflow water temperature, and a three-dimensional hydrodynamic model (AEM3D) was used to predict the change in the future (2018~2037, 2038~2057, 2058~2077, 2078~2097) stratification structure of DR due to climate change. As a result, the rates of increase in air temperature and inflow water temperature was 0.14~0.48℃/10year and 0.21~0.41℃/10year,respectively. As a result of seasonal analysis, in all scenarios except spring and winter in the RCP 2.6, the increase in inflow water temperature was statistically significant, and the increase rate was higher as the carbon reduction effort was weaker. The increase rate of the surface water temperature of the reservoir was in the range of 0.04~0.38℃/10year, and the stratification period was gradually increased in all scenarios. In particular, when the RCP 8.5 scenario is applied, the number of stratification days is expected to increase by about 24 days. These results were consistent with the results of previous studies that climate change strengthens the stratification intensity of lakes and reservoirs and prolonged the stratification period, and suggested that prolonged water temperature stratification could cause changes in the aquatic ecosystem, such as spatial expansion of the low-oxygen layer, an increase in sediment nutrient release, and changed in the dominant species of algae in the water body.

Development of Artificial Intelligence Joint Model for Hybrid Finite Element Analysis (하이브리드 유한요소해석을 위한 인공지능 조인트 모델 개발)

  • Jang, Kyung Suk;Lim, Hyoung Jun;Hwang, Ji Hye;Shin, Jaeyoon;Yun, Gun Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.10
    • /
    • pp.773-782
    • /
    • 2020
  • The development of joint FE models for deep learning neural network (DLNN)-based hybrid FEA is presented. Material models of bolts and bearings in the front axle of tractor, showing complex behavior induced by various tightening conditions, were replaced with DLNN models. Bolts are modeled as one-dimensional Timoshenko beam elements with six degrees of freedom, and bearings as three-dimensional solid elements. Stress-strain data were extracted from all elements after finite element analysis subjected to various load conditions, and DLNN for bolts and bearing were trained with Tensorflow. The DLNN-based joint models were implemented in the ABAQUS user subroutines where stresses from the next increment are updated and the algorithmic tangent stiffness matrix is calculated. Generalization of the trained DLNN in the FE model was verified by subjecting it to a new loading condition. Finally, the DLNN-based FEA for the front axle of the tractor was conducted and the feasibility was verified by comparing with results of a static structural experiment of the actual tractor.

Analysis of Paddy Rice Water Footprint under Climate Change Using AquaCrop (AquaCrop을 이용한 기후변화에 따른 미래 논벼 물발자국 변화 분석)

  • Oh, Bu-Yeong;Lee, Sang-Hyun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.45-55
    • /
    • 2017
  • Climate change causes changes in rainfall patterns, temperature and drought frequency. Climate change impact influences on water management and crop production. It is critical issue in agricultural industry. Rice is a staple cereal crop in South Korea and Korea uses a ponding system for its paddy fields which requires a significant amount of water. In addition, water supply has inter-relationship with crop production which indicates water productivity. Therefore, it is important to assess overall impacts of climate change on water resource and crop production. A water footprint concept is an indicator which shows relationship between water use and crop yield. In addition, it generally composed of three components depending on water resources: green, blue, grey water. This study analyzed the change trend of water footprint of paddy rice under the climate change. The downscaled climate data from HadGEM3-RA based on RCP 8.5 scenario was applied as future periods (2020s, 2050s, 2080s), and historical climate data was set to base line (1990s). Depending on agro-climatic zones, Suwon and Jeonju were selected for study area. A yield of paddy rice was simulated by using FAO-AquaCrop 5.0, which is a water-driven crop model. Model was calibrated by adjusting parameters and was validated by Mann-Whitney U test statistically. The means of water footprint were projected increase by 55 % (2020s), 51 % (2050s) and 48 % (2080s), respectively, from the baseline value of $767m^2/ton$ in Suwon. In case of Jeonju, total water footprint was projected to increase by 46 % (2020s), 45 % (2050s), 12 % (2080s), respectively, from the baseline value of $765m^2/ton$. The results are expected to be useful for paddy water management and operation of water supply system and apply in establishing long-term policies for agricultural water resources.

A Study on Technology Evaluation Models and Evaluation Indicators focusing on the Fields of Marine and Fishery (기술력 평가모형 및 평가지표에 대한 연구: 해양수산업을 중심으로)

  • Kim, Min-Seung;Jang, Yong-Ju;Lee, Chan-Ho;Choi, Ji-Hye;Lee, Jeong-Hee;Ahn, Min-Ho;Sung, Tae-Eung
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.90-102
    • /
    • 2021
  • Technology evaluation is to assess the ability of technology commercialization entities to generate profits by using the subject technology, and domestic technology evaluation agencies have established and implemented their own evaluation systems. In particular, the recently developed technology evaluation model in the fields of marine and fishery does not sufficiently reflect the poor environment for technology development compared to other industries, so it does not pass the level of T4 rating, which is considered appropriate for investment. This is recognized as a challenge that occurs when the common evaluation indicators and evaluation scales used in other industries, and when the scoring system for T1 to T10 grading is similarly or identically utilized. Therefore, through this study, we intend to secure the appropriateness and reliability of the results of the comprehensive rating calculation by developing technology evaluation models and indicators that well explain the nine marine and fisheries industry classification systems. Based on KED and technology evaluation case data, AHP-based index weighting and Monte Carlo simulation-based rating system are applied and the results of case studies are verified. Through the proposed model, we aim to enhance the usability of R&D and commercialization support programs based on fast, convenient and objective evaluation results by applying to upcoming technology evaluation cases.

Development of a surrogate model based on temperature for estimation of evapotranspiration and its use for drought index applicability assessment (증발산 산정을 위한 온도기반의 대체모형 개발 및 가뭄지수 적용성 평가)

  • Kim, Ho-Jun;Kim, Kyoungwook;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.969-983
    • /
    • 2021
  • Evapotranspiration, one of the hydrometeorological components, is considered an important variable for water resource planning and management and is primarily used as input data for hydrological models such as water balance models. The FAO56 PM method has been recommended as a standard approach to estimate the reference evapotranspiration with relatively high accuracy. However, the FAO56 PM method is often challenging to apply because it requires considerable hydrometeorological variables. In this perspective, the Hargreaves equation has been widely adopted to estimate the reference evapotranspiration. In this study, a set of parameters of the Hargreaves equation was calibrated with relatively long-term data within a Bayesian framework. Statistical index (CC, RMSE, IoA) is used to validate the model. RMSE for monthly results reduced from 7.94 ~ 24.91 mm/month to 7.94 ~ 24.91 mm/month for the validation period. The results confirmed that the accuracy was significantly improved compared to the existing Hargreaves equation. Further, the evaporative demand drought index (EDDI) based on the evaporative demand (E0) was proposed. To confirm the effectiveness of the EDDI, this study evaluated the estimated EDDI for the recent drought events from 2014 to 2015 and 2018, along with precipitation and SPI. As a result of the evaluation of the Han-river watershed in 2018, the weekly EDDI increased to more than 2 and it was confirmed that EDDI more effectively detects the onset of drought caused by heatwaves. EDDI can be used as a drought index, particularly for heatwave-driven flash drought monitoring and along with SPI.

OVERVIEW OF KSTAR INTEGRATED CONTROL SYSTEM

  • Park, Mi-Kyung;Kim, Kuk-Hee;Lee, Tae-Gu;Kim, Myung-Kyu;Hong, Jae-Sic;Baek, Sul-Hee;Lee, Sang-Il;Park, Jin-Seop;Chu, Yong;Kim, Young-Ok;Hahn, Sang-Hee;Oh, Yeong-Kook;Bak, Joo-Shik
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.451-458
    • /
    • 2008
  • After more than 10 years construction, KSTAR (Korea Superconducting Tokamak Advanced Research) had finally completed its assembly in June 2007, and then achieved the goal of first-plasma in July 2008 through the four month's commissioning. KSTAR was constructed with fully superconducting magnets with material of $Nb_3Sn$ and NbTi, and their operation temperatures are maintained below 4.5K by the help of Helium Refrigerator System. During the first-plasma operation, plasmas of maximum current of 133kA and maximum pulse width of 865ms were obtained. The KSTAR Integrated Control System (KICS) has successfully fulfilled its missions of surveillance, device operation, machine protection interlock, and data acquisition and management. These and more were all KSTAR commissioning requirements. For reliable and safe operation of KSTAR, 17 local control systems were developed. Those systems must be integrated into the logically single control system, and operate regardless of their platforms and location installed. In order to meet these requirements, KICS was developed as a network-based distributed system and adopted a new framework, named as EPICS (Experimental Physics and Industrial Control System). Also, KICS has some features in KSTAR operation. It performs not only 24 hour continuous plant operation, but the shot-based real-time feedback control by exchanging the initiatives of operation between a central controller and a plasma control system in accordance with the operation sequence. For the diagnosis and analysis of plasma, 11 types of diagnostic system were implemented in KSTAR, and the acquired data from them were archived using MDSpius (Model Driven System), which is widely used in data management of fusion control systems. This paper will cover the design and implementation of the KSTAR integrated control system and the data management and visualization systems. Commissioning results will be introduced in brief.