INDAHINGWATI, Asmara;LAUNTU, Ansir;TAMSAH, Hasmin;FIRMAN, Ahmad;PUTRA, Aditya Halim Perdana Kusuma;ASWARI, Aan
유통과학연구
/
제17권8호
/
pp.25-34
/
2019
Purpose - Investigate the association of internal and external factors of consumers and analysing the role of moderating comparative marketing aspects, especially the part of YouTuber and celebgram in influencing purchase decisions. Apart from that, it provides an overview of the pattern of purchase decision making in forming Millennials and Y generation consumer culture Research design, data, and methodology - This study uses a quantitative research approach with descriptive, predictive, and prospective data analysis on 300 eligible Millennials and Y aged 20-35 years who are bachelor-educated. Data collection using online surveys with final statistical analysis using the Partial Least Square (PLS) approach Results - All hypothesis are declared accepted, indirect testing the dominant internal consumer factors have a positive and significant effect on consumers' purchase decisions. Through testing Moderating, aspect marketing comparative is also authoritative able to moderate internal consumer factors towards purchase decision making. Conclusions - Digital technology is changing the paradigm and perceptions of the millennials and Y generations in terms of behaving as a generation of technology connoisseurs who also influence and shape the culture of that generation and the generations to come in the future.
This study describes the strategy for advanced decision support system (ADSS) development for integrated management of water resources and quality in reservoir systems. The developed ADSS consists of database that contain hydrologic data, observed operational data, and data to support specific reservoir operations simulation, optimization models, and water quality models. The optimization model, mass balance simulation model and water quality models are used in a general prototype ADSS, menu driven controlling framework that assists the user to specify and evaluate the alternative operational scenarios at one time. These alternative scenarios are evaluated by the models and the results are compared through the use of a graphical based display system. This graphical based system uses an icon based schematic representation of the system to organize the presentation of the results. The ADSS includes the ability to use monthly or weekly time periods of analysis for the models and it can use monthly historical or stochastically generated inflows.
Mobile traffic is one of the most important indexes of the growth of the mobile communications market, and it has a close relationship with subscribers' service usage patterns, frequency demand and supply, network management, and information communication policy. The purpose of this paper is to understand mobile data usage in Korea and to suggest the optimal steps for establishing the frequency supply and demand system by researching the traffic trends that reflect the characteristics of radio resources in the mobile communications field. To achieve this goal, attempts were made to increase the possibility of policy use by analyzing and forecasting mobile traffic trends, and to improve the accuracy of the research through the verification of the existing prediction results. The paper ends with a discussion of the necessity of a frequency management system based on data science.
DDS(Data Distribution Service)는 유연성, 확장성, 실시간 통신 환경을 지원하는 통신 미들웨어이다. 본 논문에서는 DDS 미들웨어의 성능을 향상시키기 위한 방법들을 제안한다. DDS 미들웨어 내부 동작과 관련된 세부 이벤트를 정의하고, 이벤트 구동형 구조에 적용하기 위해 하나의 DDS 메시지를 의미 있는 서브메시지 단위로 분해함으로써 처리 복잡도를 낮출 수 있다. 제안하는 히스토리캐시 관리 기법은 DDS의 특성 상 상태접근과 임의접근이 빈번하게 발생한다는 사실을 이용한다. 제안한 방법들을 본 연구팀이 개발한 EchoDDS에 적용하여 성능을 향상시켰다.
Data-driven engineering is crucial for information delivery between design, fabrication, assembly, and maintenance of prefabricated structures. Design for manufacturing and assembly (DfMA) is a critical methodology for prefabricated bridge structures. In this study, a novel concept of digital engineering model that combined existing knowledge of DfMA with object-oriented parametric modeling technologies was developed. Three-dimensional (3D) geometry models and their data models for each phase of a construction project were defined for information delivery. Digital design models were used for conceptual design, including aesthetic consideration and possible variation during fabrication and assembly. The seismic performance of a bridge pier was evaluated by linking the design parameters to the calculated moment-curvature curves. Control parameters were selected to consider the tolerance control and revision of the digital models. Digitalized fabrication of the prefabricated members was realized using the digital fabrication model with G-code for a concrete printer or a robot. The fabrication error was evaluated and the design digital models were updated. The revised fabrication models were used in the preassembly simulation to guarantee constructability. For the maintenance of the bridge, the as-built information was defined for the prefabricated bridge piers. The results of this process revealed that data-driven information delivery is crucial for lifecycle management of prefabricated bridge piers.
The importance of Structural Health Monitoring (SHM) in the industry is increasing due to various loads, such as earthquakes and wind, having a significant impact on the performance of structures and equipment. Estimating responses is crucial for the effective health management of these assets. However, using numerous sensors in facilities and equipment for response estimation causes economic challenges. Additionally, it could require a response from locations where sensors cannot be attached. Digital twin technology has garnered significant attention in the industry to address these challenges. This paper constructs a digital twin system utilizing the Long Short-Term Memory (LSTM) model to estimate responses in a pipe system under simultaneous seismic load and arbitrary loads. The performance of the data-driven digital twin system was verified through a comparative analysis of experimental data, demonstrating that the constructed digital twin system successfully estimated the responses.
International Journal of Advanced Culture Technology
/
제12권2호
/
pp.167-179
/
2024
This study addresses the challenge of objectively evaluating the performance of early-stage startups amidst limited information and uncertainty. Focusing on companies selected by TIPS, a leading private sector-driven startup support policy in Korea, the research develops a new indicator to assess technological efficiency. By analyzing various input and output variables collected from Crunchbase and KIND (Korea Investor's Network for Disclosure System) databases, including technology use metrics, patents, and Crunchbase rankings, the study derives technological efficiency for TIPS-selected startups. A prediction model is then developed utilizing machine learning techniques such as Random Forest and boosting (XGBoost) to classify startups into efficiency percentiles (10th, 30th, and 50th). The results indicate that prediction accuracy improves with higher percentiles based on the technical efficiency index, providing valuable insights for evaluating and predicting startup performance in early markets characterized by information scarcity and uncertainty. Future research directions should focus on assessing growth potential and sustainability using the developed classification and prediction models, aiding investors in making data-driven investment decisions and contributing to the development of the early startup ecosystem.
Journal of Information Technology Applications and Management
/
제16권4호
/
pp.223-244
/
2009
Defense R&D is an essential investment for the national security. Recently our nation has also begun to initiate a number of defense R&D projects. As a lot of fund and resources are allocated to these projects, we need to identify which projects to initiate and then how to manage these projects well. Though there have been a number of studies on R&D projects in commercial sector, there are only a few studies in defense R&D sector. Moreover, these existing defense R&D studies mainly deal with the former issues, which are occurring at the stage of project planing. We are more concerned with project management issues, such as how to manage projects that had already been evaluated to undertake at the planning stage. Specifically our study aims to identify project management factors leading to the success of defense R&D projects. Results of the empirical analysis indicate that management support, user-driven requirements management, and project planning capability are key elements for project performance.
Today, it is imperative to educate students on how to best prepare themselves for the new data driven era of the future. Undergraduate education plays an important role in providing students with more Data Science opportunities and expanding the supply of Data Science talent. This paper surveys and analyzes the curricula of Data Science-related bachelor's degree programs in the United States. The 'required' and 'elective' courses in a curriculum for obtaining a B.S. degree were evaluated by course weight to indicate its necessity. As a result, it was possible to find out which courses were important in Data Science programs and which areas were emphasized for B.S. degrees in Data Science. We found that courses belong to the Data Science area, such as data management, data visualization, and data modeling, were more required for Data Science B.S. degrees in the United States.
인공지능의 사회적수용도가 증가하면서 머신러닝 기법을 기업에 적용하는 사례가 증가하고 있다. 머신러닝 기법의 선정에는 주로 정확성이나 해석 가능성 등 기술적 요인이 주로 기준이 되어왔다. 그러나 머신러닝 채택의 성공은 개발부서, 사용부서, 리더십과 조직문화 등 경영관리 요인도 영향을 주기도 한다. 아쉽게도 기술적 요인과 경영관리적 요인이 함께 고려된 머신러닝 선정의 성공 요인을 이해하는 통합 연구가 거의 존재하지 않는다. 이에 본 논문의 목적은 기업 내 머신러닝 선정을 이해하기 위해 John Rice의 algorithm selection process model과 task-technology fit, 그리고 IS Success Model 이론을 결합한 기술-경영관리 통합 모형을제안하고 실증적 분석을 하는 것이다. 머신러닝을 도입한 국내 기업 240곳을 대상으로 설문 분석을 실시한 결과 알고리즘 품질과 데이터 품질이 높을수록 문제-알고리즘 적합성에 높게 영향을 주는 것으로 나타났으며, 문제-알고리즘 적합성은 조직의 생산성과 혁신성에도 유의한 영향을 미치는 것으로 검증되었다. 또한 외주화와 경영진 지원이 머신러닝 시스템 품질에 긍정적인 영향을 미치고, 데이터 중심 경영 및 동기화와 같은 조직문화 요인은 활용성과에 높은 영향을 미치는 것으로 확인되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.