• Title/Summary/Keyword: Data-based animation

Search Result 226, Processing Time 0.024 seconds

Intuitive Manipulation of Deformable Cloth Object Based on Augmented Reality for Mobile Game (모바일 게임을 위한 증강현실 기반 직관적 변형 직물객체 조작)

  • Kim, Sang-Joon;Hong, Min;Choi, Yoo-Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.4
    • /
    • pp.159-168
    • /
    • 2018
  • In recent, mobile augmented reality game which has been attracting high attention is considered to be an good approach to increase immersion. In conventional augmented reality-based games that recognize target objects using a mobile camera and show the matching game characters, touch-based interaction is mainly used. In this paper, we propose an intuitive interaction method which manipulates a deformable game object by moving a target image of augmented reality in order to enhacne the immersion of the game. In the proposed method, the deformable object is intuitively manipulated by calculating the distance and direction between the target images and by adjusting the external force applied to the deformable object using them. In this paper, we focus on the cloth deformable object which is widely used for natural object animation in game contents and implement natural cloth simulation interacting with game objects represented by wind and rigid objects. In the experiments, we compare the previous commercial cloth model with the proposed method and show the proposed method can represent cloth animation more realistically.

POI searching system using PDA

  • Heo Tae-Wook;Kim Jae-Chul;Kim Kwang-Soo;Park Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.256-259
    • /
    • 2004
  • Recently, Location-based services(LBS) allow consumers to receive services based on their geographic location data. Users want to take services based location information with portable devices. And Point of Interest(POI) information's usage is increasing with mobile device's development and user's interest. And this paper shows that we connect the multimedia POI database(DB), provide the multimedia services through the portable devices and search POI using location and direction information. The multimedia POI is consisted of sound, image, moving image and animation with location information. When we search POI, we find POI in DB using the area zone and direction information.[l]

  • PDF

Design and Implementation of GIS based Traffic Information Service System (GIS 기반 교통정보 제공 시스템의 설계 및 구현)

  • Lee, Seong-Uck;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.4
    • /
    • pp.13-21
    • /
    • 2010
  • Most of traffic management systems include the map-based traffic information services using World Wide Web. Geographic Information System is an efficient tool to build a map-based system. However, many traffic information service systems have own independent maps for graphic/animation softwares such as Adobe Flash. These systems make it difficult to manage modifications of maps. In this paper, we suggest a new GIS-based traffic information service system without these problems. The proposed system makes the efficient use of GIS map data for traffic information service because a map display engine is separated from map data that is transferred after real-time conversion.

2.5D human pose estimation for shadow puppet animation

  • Liu, Shiguang;Hua, Guoguang;Li, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2042-2059
    • /
    • 2019
  • Digital shadow puppet has traditionally relied on expensive motion capture equipments and complex design. In this paper, a low-cost driven technique is presented, that captures human pose estimation data with simple camera from real scenarios, and use them to drive virtual Chinese shadow play in a 2.5D scene. We propose a special method for extracting human pose data for driving virtual Chinese shadow play, which is called 2.5D human pose estimation. Firstly, we use the 3D human pose estimation method to obtain the initial data. In the process of the following transformation, we treat the depth feature as an implicit feature, and map body joints to the range of constraints. We call the obtain pose data as 2.5D pose data. However, the 2.5D pose data can not better control the shadow puppet directly, due to the difference in motion pattern and composition structure between real pose and shadow puppet. To this end, the 2.5D pose data transformation is carried out in the implicit pose mapping space based on self-network and the final 2.5D pose expression data is produced for animating shadow puppets. Experimental results have demonstrated the effectiveness of our new method.

A Design and Implementation of Worker Motion 3D Visualization Module Based on Human Sensor

  • Sejong Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.109-114
    • /
    • 2024
  • In this paper, we design and implement a worker motion 3D visualization module based on human sensors. The three key modules that make up this system are Human Sensor Implementation, Data Set Creation, and Visualization. Human Sensor Implementation provides the functions of setting and installing the human sensor locations and collecting worker motion data through the human sensors. Data Set Creation offers functions for converting and storing motion data, creating near real-time worker motion data sets, and processing and managing sensor and motion data sets. Visualization provides functions for visualizing the worker's 3D model, evaluating motions, calculating loads, and managing large-scale data. In worker 3D model visualization, motion data sets (Skeleton & Position) are synchronized and mapped to the worker's 3D model, and the worker's 3D model motion animation is visualized by combining the worker's 3D model with analysis results. The human sensor-based worker motion 3D visualization module designed and implemented in this paper can be widely utilized as a foundational technology in the smart factory field in the future.

Development of a Simulator for the biped-walking robot using the open inventor (Open Inventor를 이용한 이족보행로봇의 시뮬레이터의 개발)

  • 최형식;김영식;전대원;우정재;김명훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.296-299
    • /
    • 2001
  • We developed a motion capture system to get angle data of human joints in the walking mode. The motion capture system is a pair of leg-shape device, which is composed of three links with ankle, knee and pelvis joints. The sensors for measurement of the joint angle are potentiometers. We used an A/D converter to get digital data from joint angles, and which are used to simulate and coordinate the biped-walking robot developed in our laboratory. To simulate and analyze walking motion, animation based on three-dimension motion is performed using the open inventor software.

  • PDF

Virtual Flutter Test of a Spanwise Curved Wing Using CFD/CSD Integrated Coupling Method (CFD/CSD 통합 연계기법을 이용한 횡방향 곡률이 있는 날개의 가상 플러터 시험)

  • Oh, Se-Won;Lee, Jung-Jin;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.355-365
    • /
    • 2006
  • The coupled time-integration method with a staggered algorithm based on computational structural dynamics (CSD), finite element method (FEM) and computational fluid dynamics (CFD) has been developed in order to demonstrate physical vibration phenomena due to dynamic aeroelastic excitations. Virtual flutter tests for the spanwise curved ing model have been effectively conducted using the present advanced computational method with high speed parallel processing technique. In addition, the present system can simultaneously give a recorded data file to generate virtual animation for the flutter safety test. The results for virtual flutter test are compared with the experimental data of wind tunnel test. It is shown from the results that the effect of spanwise curvature have a tendency to decrease the flutter dynamic pressure for the same flight condition.

Realistic Visual Simulation of Water Effects in Response to Human Motion using a Depth Camera

  • Kim, Jong-Hyun;Lee, Jung;Kim, Chang-Hun;Kim, Sun-Jeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1019-1031
    • /
    • 2017
  • In this study, we propose a new method for simulating water responding to human motion. Motion data obtained from motion-capture devices are represented as a jointed skeleton, which interacts with the velocity field in the water simulation. To integrate the motion data into the water simulation space, it is necessary to establish a mapping relationship between two fields with different properties. However, there can be severe numerical instability if the mapping breaks down, with the realism of the human-water interaction being adversely affected. To address this problem, our method extends the joint velocity mapped to each grid point to neighboring nodes. We refine these extended velocities to enable increased robustness in the water solver. Our experimental results demonstrate that water animation can be made to respond to human motions such as walking and jumping.

Development of Simulator with Cluster System for Towing Fisheries

  • Park Myeong-Chul;Ha Seok-Wun
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.2
    • /
    • pp.84-89
    • /
    • 2005
  • Goal of this study is to implement 3-dimensional underwater appearance graphical display, fishery measured information display, sonar data representation and display, and 3-dimensional underwater appearance animation based on coefficient data of chaos behavior and fishing modeling of fishing gears from PC cluster system. In order to accomplish the goals of this study, it is essential to compose user interfacing and realistic description of image scenes in the towing-net fishery simulator, and techniques to describe sand cloud effects under water using particle systems are necessary. In this study, we implemented graphical representations and animations of the simulator by using OpenGL together with C routines.

Virtual Flutter Test of Spanwise Curved Wings Using CFD/CSD Coupled Dynamic Method (CFD/CSD 정밀 연계해석기법을 이용한 3차원 곡면날개의 가상 플러터 시험)

  • Kim, Dong-Hyun;Oh, Se-Won;Kim, Hyun-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.457-464
    • /
    • 2005
  • The coupled time-integration method with a staggered algorithm based on computational structural dynamics (CSD), finite element method (FEM) and computational fluid dynamics (CFD) has been developed in order to demonstrate physical vibration phenomena due to dynamic aeroelastic excitations. Virtual flutter tests for the spanwise curved wing model have been effectively conducted using the present advanced computational methods with high speed parallel processing technique. In addition, the present system can simultaneously give a recorded data fie to generate virtual animation for the flutter safety test. The results for virtual flutter test are compared with the experimental data of wind tunnel test. It is shown from the results that the effect of spanwise curvature have a tendency to decrease the flutter dynamic pressure for the same flight condition.

  • PDF