• Title/Summary/Keyword: Data-based analysis

Search Result 31,002, Processing Time 0.058 seconds

Data-based Method of Selecting Excellent SMEs for Governmental Funding Policy: Focused on Fishery Industry in Korea (데이터 기반 정책지원 대상 우수 중소기업 발굴 방법론 연구 : 국내 수산산업을 대상으로)

  • Hwang, Soon-Wook;Chun, Dong-Phil
    • The Journal of Fisheries Business Administration
    • /
    • v.49 no.4
    • /
    • pp.1-17
    • /
    • 2018
  • The Korean fisheries industry is a traditional business, the majority of which are small and medium-sized enterprises (SMEs). It has played an important role in the South Korean economies in the past several decades, but it currently faces the limitations of growth potential and profitability due to declining workforce, aging populations, deteriorating fishery environments, climate changes, and rapid changes in the global industrial ecosystem. Many studies have suggested solutions for the fisheries industry in macro perspective, but there are rarely any studies taking the strategic approaches for the problem. If it is possible for governments to support the companies that are likely to increase their value-added selectively, it will break through the current situation more effectively. This paper introduces a study on the selection method utilizing data envelopment analysis (DEA) to find SMEs with potentials to increase profits and growth. We suggest selecting SMEs with high management efficiency and ability to utilize intangible assets as the target companies. We also suggest policy objectives for SMEs in the domestic fisheries industry based on the results of DEA analysis and propose a data-based method for the policy decisions.

Visualization for Integrated Analysis of Multi-Omics Data by Harmful Substances Exposed to Human (인체 유래 환경유해물질 노출에 따른 멀티 오믹스 데이터 통합 분석 가시화 시스템)

  • Shin, Ga-Hee;Hong, Ji-Man;Park, Seo-Woo;Kang, Byeong-Chul;Lee, Bong-Mun
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.363-373
    • /
    • 2022
  • Multi-omics data is difficult to interpret due to the heterogeneity of information by the volume of data, the complexity of characteristics of each data, and the diversity of omics platforms. There is not yet a system for interpreting to visualize research data on environmental diseases concerning environmental harmful substances. We provide MEE, a web-based visualization tool, to comprehensively explore the complexity of data due to the interconnected characteristics of high-dimensional data sets according to exposure to various environmental harmful substances. MEE visualizes omics data of correlation between omics data, subjects and samples by keyword searches of meta data, multi-omics data, and harmful substances. MEE has been demonstrated the versatility by two examples. We confirmed the correlation between smoking and asthma with RNA-seq and Methylation-Chip data, it was visualized that genes (P HACTR3, PXDN, QZMB, SOCS3 etc.) significantly related to autoimmune or inflammatory diseases. To visualize the correlation between atopic dermatitis and heavy metals, we selected 32 genes related immune response by integrated analysis of multi-omics data. However, it did not show a significant correlation between mercury in blood and atopic dermatitis. In the future, should continuously collect an appropriate level of multi-omics data in MEE system, will obtain data to analyze environmental substances and diseases.

On the Design of a Big Data based Real-Time Network Traffic Analysis Platform (빅데이터 기반의 실시간 네트워크 트래픽 분석 플랫폼 설계)

  • Lee, Donghwan;Park, Jeong Chan;Yu, Changon;Yun, Hosang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.4
    • /
    • pp.721-728
    • /
    • 2013
  • Big data is one of the most spotlighted technological trends in these days, enabling new methods to handle huge volume of complicated data for a broad range of applications. Real-time network traffic analysis essentially deals with big data, which is comprised of different types of log data from various sensors. To tackle this problem, in this paper, we devise a big data based platform, RENTAP, to detect and analyse malicious network traffic. Focused on military network environment such as closed network for C4I systems, leading big data based solutions are evaluated to verify which combination of the solutions is the best design for network traffic analysis platform. Based on the selected solutions, we provide detailed functional design of the suggested platform.

A Method for Engineering Change Analysis by Using OLAP (OLAP를 이용한 설계변경 분석 방법에 관한 연구)

  • Do, Namchul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.103-110
    • /
    • 2014
  • Engineering changes are indispensable engineering and management activities for manufactures to develop competitive products and to maintain consistency of its product data. Analysis of engineering changes provides a core functionality to support decision makings for engineering change management. This study aims to develop a method for analysis of engineering changes based on On-Line Analytical Processing (OLAP), a proven database analysis technology that has been applied to various business areas. This approach automates data processing for engineering change analysis from product databases that follow an international standard for product data management (PDM), and enables analysts to analyze various aspects of engineering changes with its OLAP operations. The study consists of modeling a standard PDM database and a multidimensional data model for engineering change analysis, implementing the standard and multidimensional models with PDM and data cube systems and applying the implemented data cube to core functions of engineering change management, the evaluation and propagation of engineering changes.

Computational simulation of intelligent big data analysis under nanotube rotation

  • Lunan Li;Allam Maalla
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.67-80
    • /
    • 2023
  • Economic investigation is one of the main issues regarding the design and production of small-scale structures. This paper concerns the creation, implementation, and economic aspects of the cross-section profile of small-scale structures regarding the dynamic response of the free and forced vibration behavior of spinning nanoscale beams based on big data analysis. According to the financial analysis, the three practical non-uniform functions of cross-sections are compared to the uniform beam in the same weight and the equal material used. The previous studies reported that the uniform beams are more stable and contain a better frequency response based on the mechanical analysis. Still, concerning the economic investigation, which means the considered structures should have equal length and have the same weight in the aspect of material used, the conclusion can be different from the mechanical aspect. Consequently, in the current paper, the dynamic response along with computer technology as well as the big data analysis of the free and forced vibration of the nanobeam regarding the economic shape of the cross-section is scrutinized.

Movie Popularity Classification Based on Support Vector Machine Combined with Social Network Analysis

  • Dorjmaa, Tserendulam;Shin, Taeksoo
    • Journal of Information Technology Services
    • /
    • v.16 no.3
    • /
    • pp.167-183
    • /
    • 2017
  • The rapid growth of information technology and mobile service platforms, i.e., internet, google, and facebook, etc. has led the abundance of data. Due to this environment, the world is now facing a revolution in the process that data is searched, collected, stored, and shared. Abundance of data gives us several opportunities to knowledge discovery and data mining techniques. In recent years, data mining methods as a solution to discovery and extraction of available knowledge in database has been more popular in e-commerce service fields such as, in particular, movie recommendation. However, most of the classification approaches for predicting the movie popularity have used only several types of information of the movie such as actor, director, rating score, language and countries etc. In this study, we propose a classification-based support vector machine (SVM) model for predicting the movie popularity based on movie's genre data and social network data. Social network analysis (SNA) is used for improving the classification accuracy. This study builds the movies' network (one mode network) based on initial data which is a two mode network as user-to-movie network. For the proposed method we computed degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality as centrality measures in movie's network. Those four centrality values and movies' genre data were used to classify the movie popularity in this study. The logistic regression, neural network, $na{\ddot{i}}ve$ Bayes classifier, and decision tree as benchmarking models for movie popularity classification were also used for comparison with the performance of our proposed model. To assess the classifier's performance accuracy this study used MovieLens data as an open database. Our empirical results indicate that our proposed model with movie's genre and centrality data has by approximately 0% higher accuracy than other classification models with only movie's genre data. The implications of our results show that our proposed model can be used for improving movie popularity classification accuracy.

Optimization of Growth Environments Based on Meteorological and Environmental Sensor Data (기상 및 환경 센서 데이터 기반 생육 환경 최적화 연구)

  • Sook Lye Jeon;Jinheung Lee;Sung Eok Kim;Jeonghwan Park
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.230-236
    • /
    • 2024
  • This study aimed to analyze the environmental factors affecting tomato growth by examining the correlation between weather and growth environment sensor data from P Smart Farm located in Gwangseok-myeon, Nonsan-si, Chungcheongnam-do. Key environmental variables such as the temperature, humidity, sunlight hours, solar radiation, and daily light integral (DLI) significantly affect tomato growth. The optimal temperature and DLI conditions play crucial roles in enhancing tomato growth and the photosynthetic efficiency. In this study, we developed a model to correct and predict the time-series variations in internal environmental sensor data using external weather sensor data. A linear regression analysis model was employed to estimate the external temperature variations and internal DLI values of P Smart Farm. Then, regression equations were derived based on these data. The analysis verified that the estimated variations in external temperature and internal DLI are explained effectively by the regression models. In this research, we analyzed and monitored smart-farm growth environment data based on weather sensor data. Thereby, we obtained an optimized model for the temperature and light conditions crucial for tomato growth. Additionally, the study emphasizes the importance of sensor-based data analysis in dynamically adjusting the tomato growth environment according to the variations in weather and growth conditions. The observations of this study indicate that analytical solutions using public weather data can provide data-driven operational experiences and productivity improvements for small- and medium-sized facility farms that cannot afford expensive sensors.

Big Data Patent Analysis Using Social Network Analysis (키워드 네트워크 분석을 이용한 빅데이터 특허 분석)

  • Choi, Ju-Choel
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.2
    • /
    • pp.251-257
    • /
    • 2018
  • As the use of big data is necessary for increasing business value, the size of the big data market is getting bigger. Accordingly, it is important to apply competitive patents in order to gain the big data market. In this study, we conducted the patent analysis based keyword network to analyze the trend of big data patents. The analysis procedure consists of big data collection and preprocessing, network construction, and network analysis. The results of the study are as follows. Most of big data patents are related to data processing and analysis, and the keywords with high degree centrality and between centrality are "analysis", "process", "information", "data", "prediction", "server", "service", and "construction". we expect that the results of this study will offer useful information in applying big data patent.

Case-Based Reasoning Framework for Data Model Reuse (데이터 모델 재사용을 위한 사례기반추론 프레임워크)

  • 이재식;한재홍
    • Journal of Intelligence and Information Systems
    • /
    • v.3 no.2
    • /
    • pp.33-55
    • /
    • 1997
  • A data model is a diagram that describes the properties of different categories of data and the associations among them within a business or information system. In spite of its importance and usefulness, data modeling activity requires not only a lot of time and effort but also extensive experience and expertise. The data models for similar business areas are analogous to one another. Therefore, it is reasonable to reuse the already-developed data models if the target business area is similar to what we have already analyzed before. In this research, we develop a case-based reasoning system for data model reuse, which we shall call CB-DM Reuser (Case-Based Data Model Reuser). CB-DM Reuse consists of four subsystems : the graphic user interface to interact with end user, the data model management system to build new data model, the case base to store the past data models, and the knowledge base to store data modeling and data model reusing knowledge. We present the functionality of CB-DM Reuser and show how it works on real-life a, pp.ication.

  • PDF

Cluster analysis by month for meteorological stations using a gridded data of numerical model with temperatures and precipitation (기온과 강수량의 수치모델 격자자료를 이용한 기상관측지점의 월별 군집화)

  • Kim, Hee-Kyung;Kim, Kwang-Sub;Lee, Jae-Won;Lee, Yung-Seop
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1133-1144
    • /
    • 2017
  • Cluster analysis with meteorological data allows to segment meteorological region based on meteorological characteristics. By the way, meteorological observed data are not adequate for cluster analysis because meteorological stations which observe the data are located not uniformly. Therefore the clustering of meteorological observed data cannot reflect the climate characteristic of South Korea properly. The clustering of $5km{\times}5km$ gridded data derived from a numerical model, on the other hand, reflect it evenly. In this study, we analyzed long-term grid data for temperatures and precipitation using cluster analysis. Due to the monthly difference of climate characteristics, clustering was performed by month. As the result of K-Means cluster analysis is so sensitive to initial values, we used initial values with Ward method which is hierarchical cluster analysis method. Based on clustering of gridded data, cluster of meteorological stations were determined. As a result, clustering of meteorological stations in South Korea has been made spatio-temporal segmentation.