• Title/Summary/Keyword: Data-Integration

Search Result 3,456, Processing Time 0.031 seconds

A Study on the Application of IHS Transformation Technique for the Enhancement of Remotely Sensed Data Classification (리모트센싱 데이터의 분류향상을 위한 IHS 변환기법 적용)

  • Yeon, Sangho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.1 no.1
    • /
    • pp.109-117
    • /
    • 1998
  • To obtain new information using a single remotely sensed image data is limited to extract various information. Recent trends in the remote sensing show that many researchers integrate and analyze many different forms of remotely sensed data, such as optical and radar satellite images, aerial photograph, airborne multispectral scanner data and land spectral scanners. Korean researchers have not been using such a combined dataset yet. This study intended to apply the technique of integration between optical data and radar data(SAR) and to examine the output that had been obtained through the technique of supervised classification using the result of integration. As a result, we found of better enhanced image classification results by using IHS conversion than by using RGB mixed and interband correlation.

A Machine learning Approach for Knowledge Base Construction Incorporating GIS Data for land Cover Classification of Landsat ETM+ Image (지식 기반 시스템에서 GIS 자료를 활용하기 위한 기계 학습 기법에 관한 연구 - Landsat ETM+ 영상의 토지 피복 분류를 사례로)

  • Kim, Hwa-Hwan;Ku, Cha-Yang
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.5
    • /
    • pp.761-774
    • /
    • 2008
  • Integration of GIS data and human expert knowledge into digital image processing has long been acknowledged as a necessity to improve remote sensing image analysis. We propose inductive machine learning algorithm for GIS data integration and rule-based classification method for land cover classification. Proposed method is tested with a land cover classification of a Landsat ETM+ multispectral image and GIS data layers including elevation, aspect, slope, distance to water bodies, distance to road network, and population density. Decision trees and production rules for land cover classification are generated by C5.0 inductive machine learning algorithm with 350 stratified random point samples. Production rules are used for land cover classification integrated with unsupervised ISODATA classification. Result shows that GIS data layers such as elevation, distance to water bodies and population density can be effectively integrated for rule-based image classification. Intuitive production rules generated by inductive machine learning are easy to understand. Proposed method demonstrates how various GIS data layers can be integrated with remotely sensed imagery in a framework of knowledge base construction to improve land cover classification.

Geostatistical Integration of Seismic Velocity and Resistivity Data for Probabilistic Evaluation of Rock Quality (탄성파 속도와 전기비저항 자료의 지구통계학적 복합해석에 의한 암반등급의 확률적 평가)

  • Oh, Seok-Hoon;Suh, Baek-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.293-298
    • /
    • 2007
  • A new way to integrate various geophysical information for evaluation of RQD was developed. In this study, we does not directly define the RQD value where borehole data are not sampled. Instead, we infer the probability of RQD values with prior probability of data directly obtained from borehole, and secondary supporting probability from resistivity and seismic tomography data. First, we applied the geostatstical indicator kriging to get prior probability of RQD value, and indicator kriging with soft data to get the supporting probability from resistivity and seismic data. And we finally applied the permanence ratio rule to integrate these information. The finally obtained result was also analyzed to fully utilize the probabilistic features. For example, we showed the probability of wrongly classifying the RQD evaluation and vice versa. This kind of analytical result may be used for decision making process based on the geophysical exploration.

Study on Building Data Set Matching Considering Position Error (위치 오차를 고려한 건물 데이터 셋의 매칭에 관한 연구)

  • Kim, Ki-Rak;Huh, Yong;Yu, Ki-Yun
    • Spatial Information Research
    • /
    • v.19 no.2
    • /
    • pp.37-46
    • /
    • 2011
  • Recently in the field of GIS(Geographic Information System), data integration from various sources has become an important topic in order to use spatial data effectively. In general, the integration of spatial data is accomplished by navigating corresponding space object and combining the information interacting with each object. But it is very difficult to navigate an object which has correspondence with one in another dataset. Many matching methods have been studied for navigating spatial object. The purpose of this paper is development of method for searching correspondent spatial object considering local position error which is remained even after coordinate transform ation when two different building data sets integrated. To achieve this goal, we performed coordinate transformation and overlapped two data sets and generated blocks which have similar position error. We matched building objects within each block using similarity and ICP algorithm. Finally, we tested this method in the aspect of applicability.

The Ontology-based Patient Management System using Sensor Data (온톨로지 기반의 센서 데이터를 이용한 환자 관리 시스템)

  • Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2073-2078
    • /
    • 2016
  • Recently, there have been many research that recognize the situation using sensors. However, sensor data collection and analysis are still lacking in integration. This is because the data generated by the sensor is difficult to match in terms of metadata and units. Therefore, a methodology for efficiently using data generated from various sensors is needed. In this paper, we propose a system that recognizes the location through information generated from a moving iBeacon. This system constructs the ontology with the data that can recognize the exact position when the patient wearing iBeacon moves in the room. This maps standard items and sensor items, and stores the results of filtering the detected values as knowledge. the system can extract efficient location information by recognizing the value generated by moving the patient carrying iBeacon through the ontology. This can be applied not only to beacons but also to other sensors, and it can be applied variously according to the ontology configuration.

Design and Implementation of Integrated Production System for Large Aviation Parts (데이터 중심 통합생산시스템 설계 및 구현: 대형항공부품가공 사례)

  • Bae, Sungmoon;Bae, Hyojin;Hong, Kum Suk;Park, Chulsoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.208-219
    • /
    • 2021
  • In the era of the 4th industrial revolution driven by the convergence of ICT(information and communication technology) and manufacturing, research on smart factories is being actively conducted. In particular, the manufacturing industry prefers smart factories that autonomously connect and analyze data. For the efficient implementation of smart factories, it is essential to have an integrated production system that vertically integrates separately operated production equipment and heterogeneous S/W systems such as ERP, MES. In addition, it is necessary to double-verify production data by using automatic data collection technology so that the production process can be traced transparently. In this study, we want to show a case of data-centered integration of a large aircraft parts processing factory that requires high precision, takes a long time, and has the characteristics of processing large raw materials. For this, the components of the data-oriented integrated production system were identified and the connection structure between them was explained. And we would like to share the experience gained through the design and implementation case. The integrated production system proposed in this study integrates internal components based on data, which is expected to serve as a basis for SMEs to develop into an advanced stage, and traces materials with RFID technology.

Fatigue wind load spectrum construction based on integration of turbulent wind model and measured data for long-span metal roof

  • Liman Yang;Cong Ye;Xu Yang;Xueyao Yang;Jian-ge Kou
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.121-131
    • /
    • 2023
  • Aiming at the problem that fatigue characteristics of metal roof rely on local physical tests and lacks the cyclic load sequence matching with regional climate, this paper proposed a method of constructing the fatigue load spectrum based on integration of wind load model, measured data of long-span metal roof and climate statistical data. According to the turbulence characteristics of wind, the wind load model is established from the aspects of turbulence intensity, power spectral density and wind pressure coefficient. Considering the influence of roof configuration on wind pressure distribution, the parameters are modified through fusing the measured data with least squares method to approximate the actual wind pressure load of the roof system. Furthermore, with regards to the wind climate characteristics of building location, Weibull model is adopted to analyze the regional meteorological data to obtain the probability density distribution of wind velocity used for calculating wind load, so as to establish the cyclic wind load sequence with the attributes of regional climate and building configuration. Finally, taking a workshop's metal roof as an example, the wind load spectrum is constructed according to this method, and the fatigue simulation and residual life prediction are implemented based on the experimental data. The forecasting result is lightly higher than the design standards, consistent with general principles of its conservative safety design scale, which shows that the presented method is validated for the fatigue characteristics study and health assessment of metal roof.

The Architecture of an Intelligent Digital Twin for a Cyber-Physical Route-Finding System in Smart Cities

  • Habibnezhad, Mahmoud;Shayesteh, Shayan;Liu, Yizhi;Fardhosseini, Mohammad Sadra;Jebelli, Houtan
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.510-519
    • /
    • 2020
  • Within an intelligent automated cyber-physical system, the realization of the autonomous mechanism for data collection, data integration, and data analysis plays a critical role in the design, development, operation, and maintenance of such a system. This construct is particularly vital for fault-tolerant route-finding systems that rely on the imprecise GPS location of the vehicles to properly operate, timely plan, and continuously produce informative feedback to the user. More essentially, the integration of digital twins with cyber-physical route-finding systems has been overlooked in intelligent transportation services with the capacity to construct the network routes solely from the locations of the operating vehicles. To address this limitation, the present study proposes a conceptual architecture that employs digital twin to autonomously maintain, update, and manage intelligent transportation systems. This virtual management simulation can improve the accuracy of time-of-arrival prediction based on auto-generated routes on which the vehicle's real-time location is mapped. To that end, first, an intelligent transportation system was developed based on two primary mechanisms: 1) an automated route finding process in which predictive data-driven models (i.e., regularized least-squares regression) can elicit the geometry and direction of the routes of the transportation network from the cloud of geotagged data points of the operating vehicles and 2) an intelligent mapping process capable of accurately locating the vehicles on the map whereby their arrival times to any point on the route can be estimated. Afterward, the digital representations of the physical entities (i.e., vehicles and routes) were simulated based on the auto-generated routes and the vehicles' locations in near-real-time. Finally, the feasibility and usability of the presented conceptual framework were evaluated through the comparison between the primary characteristics of the physical entities with their digital representations. The proposed architecture can be used by the vehicle-tracking applications dependent on geotagged data for digital mapping and location tracking of vehicles under a systematic comparison and simulation cyber-physical system.

  • PDF

ERP Application Development Using Business Data Dictionary (데이터사전을 이용한 ERP애플리케이션 개발)

  • Minsu Jang;Joo-Chan Sohn;Jong-Myoung Baik
    • The Journal of Society for e-Business Studies
    • /
    • v.7 no.1
    • /
    • pp.141-152
    • /
    • 2002
  • Data dictionary is a collection of meta-data, which describes data produced and consumed while performing business processes. Data dictionary is an essential element for business process standardization and automation, and has a fundamental role in ERP application management and customization. Also, data dictionary facilitates B2B processes by enabling painless integration of business processes between various enterprises. We implemented data dictionary support in SEA+, a component- based scalable ERP system developed in ETRI, and found out that it's a plausible feature of business information system. We discovered that data dictionary promotes semantic, not syntactic, data management, which can make it possible to leverage viability of the tool in the coming age of more meta-data oriented computing world. We envision that business data dictionary is a firm foundation of adapting business knowledge, applications and processes into the semantic web based enterprise infra-structure.

  • PDF

Data Design Strategy for Data Governance Applied to Customer Relationship Management

  • Sangwon LEE;Joohyung KIM
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.338-345
    • /
    • 2023
  • Nowadays, many companies are striving to turn customer value into business value. Customer Relationship Management is a management system that develops effective and efficient marketing strategies by classifying customers in detail based on their information, i.e. databases, and consists of various information technologies. To implement this management system, a customer integration database must be established, and customer characteristics (buying behavior, preferences, etc.) must be analyzed with the databases established and the behavior of each customer must be predicted. This study aims to systematically manage a large amount of customer data generated by companies that apply Customer Relationship Management, in order to develop data design and data governance strategies that should be considered to increase customer value and even company value. We mainly looked at the characteristics of customer relationship management and data governance, and then explored the link between the field of customer relationship management and data governance. In addition, we have developed a data strategy that companies need to perform data governance for customer relationship management.