현대의 소프트웨어공학 관련 연구 중에서, 산업계가 궁극적으로 추구하는 수준의 생산성을 제공할 수 있는 기술은 아마도 프로덕트라인 공학이 될 것이다. 지금까지의 소프트웨어공학 기술로는 소프트웨어 개발 분야에 프로덕트라인 기법을 실질적이고 실용적으로 적용하기에는 아직 충분히 성숙하지 못한 것이 사실이다. 본 논문에서는 저자가 산업체에서 접한 과거 3년 동안의 PDA 스마트폰 개발 경험을 바탕으로 실용적 수준의 프로덕트라인 기법을 Model-Driven Architecture(MDA) 접근 방법을 통해 제안한다. 이동 단말 시스템의 경우 단말기 제조사, 목적 사용자 층, 이동 단말 사업자 등에 따라 다양한 형태의 소프트웨어가 존재한다. 특히, 최근에는 단말기 사용자가 직접 느낄 수 있는 지원 기능 구성 및 인터페이스 형식은 매우 다양한 형태가 존재하며, 같은 제조사에 시리즈 제품으로 개발하더라도 이 부분에 대한 변이성이 매우 큰 특징이 있다. 하지만, 전형적인 폰 관련 기능 모듈 즉, 음성호 및 화상전화 기능, 메시지, 주소록, 데이터통신, 카메라 및 멀티미디어 기능, 웹 브라우징 과 같은 큰 기능 묶음에 대한 피처(Feature)들은 자체의 다양한 기능적 요구사항과 함께 피처 간 상호 연관성을 크고 다양한 형태로 구성될 수 있는 특성이 있다. 본 논문에서는 이동 단말기에서 구현해야 하는 다양한 형태의 사용자 소프트웨어의 요구사항에 대해 사용 시나리오 상에서 구분 가능하고 의미 있는 장면의 연속 관계로 정의하여 추후 설계, 구현, 시험 단계에서도 소프트웨어 아키텍쳐 역할을 할 수 있는 개발 기법을 제안한다. 따라서, 요구분석 단계에서도 사용자 인터페이스 관점에서 전반적인 소프트웨어 아키텍쳐에 대해 검증할 수 있게 될 뿐만 아니라 소프트웨어 개발 주기 전 과정에서 그 구조를 사용자 인터페이스 관점에서 유지, 관리 할 수 있는 핵심적인 방법을 제공한다.
밸브의 내부 누설 현상은 밸브의 내부 부품의 손상에 의해 발생하며 배관 시스템의 사고와 운전정지를 일으키는 주요 요인이다. 본 연구는 버터플라이형 밸브의 내부 누설에 따라 배관계에서 발생하는 음향방출 신호를 이용하여 배관 가동 중 실시간 누설 진단의 가능성을 검토하였다. 이를 위해 밸브의 작동 모드별로 측정한 시간영역의 AE 원시신호를 취득하였으며 이로부터 구축한 데이터셋은 데이터 기반의 인공지능 알고리즘에 적용하여 밸브의 내부 누설 유무를 진단하는 모델을 생성하였다. 누설 유무진단을 분류의 문제로 정의하여 SVM 기반의 머신러닝과 CNN 기반의 딥러닝 분류 알고리즘을 적용하였다. 데이터의 특징 추출에 기반한 SVM 분류 모델의 경우, 이진분류 모델에서 구축된 모델에 따라 83~90%의 정확도를 나타냈으며, 다중 클래스인 경우 분류 정확도가 66%로 감소하였다. 반면, CNN 기반의 다중 클래스 분류 모델의 경우 99.85%의 분류 정확도를 얻을 수 있었다. 결론적으로 밸브 내부 누설 진단을 위한 SVM 분류모델은 다중 클래스의 정확도 향상을 위해 적절한 특징 추출이 필요하며, CNN 기반의 분류모델은 프로세서의 성능 저하만 없다면 누설진단과 밸브 개도 분류에 효율적인 접근방법임을 확인하였다.
최근 국내에서는 대도시권의 교통혼잡 완화를 위하여 다양한 대중교통 활성화 정책을 시행중에 있다. 특히 대도시권역에서는 버스정보시스템이 도입되어 버스의 현재위치, 도착예정시간 등에 대한 정보를 제공하고 있다. 하지만 복잡한 도시부를 지나는 버스들의 경우 반복적인 교통혼잡과 버스몰림으로 인하여 정확한 통행시간 정보제공 시 정확도를 확보하는데 어려움이 있다. 기존 버스 통행시간 연구는 링크별 소통정보 제공방식으로 인하여 버스 이용자의 경로 통행시간 정보 제공 시 어려움이 있고, 데이터 기반의 단기 통행방식으로 중장기 정보 제공이 어렵다는 한계가 있다. 이에 본 연구에서는 경로기반의 중장기 버스통행시간 예측 방법론에 대한 연구를 실시한다. 이를 위하여 2015년 버스통행정보로 학습데이터, 2016년 자료로 검증데이터를 구성하였다. 학습데이터를 이용하여 버스통행정보를 분석하여 버스통행시간에 영향을 미치는 요인들을 출발시각, 요일, 그리고 기상요인 등으로 분류하고, 이들의 특성 값을 자기조직화지도를 활용하여 비슷한 통행 패턴을 가지는 군집으로 분류하였다. 도출된 군집들을 바탕으로 맑음과 우천시에 대한 요일/출발시각 별 버스통행시간 참조 테이블을 구성하였다. 검증데이터를 이용하여 본 연구에서 도출한 버스통행시간의 정확도를 검증하였다. 본 연구의 중장기 예측 알고리즘을 활용하여 기존의 직관적이고 경험적인 접근법의 한계를 극복할 수 있으며, 예측의 정확도 개선을 통한 버스이용자 만족도 향상 및 탄력적인 대중교통 정책 수립이 가능할 것으로 판단된다.
최근 세종시는 개발 및 정비가 추진되면서 여러 분야에서 발생하는 사회문제를 해결하기 위해, 축적된 데이터의 활용이 대두되고 있다. 세종시가 추진 중이거나 추진예정 중인 정책의 품질 제고 및 사회적 변화에 대응하는 정책수립 및 운영에 축적된 데이터를 활용하여 과학적 정책수립의 필요성이 강조되고 있다. 특히, 경제사회구조의 급속한 변화 속에서 한정된 자원을 유효하게 활용하여 시민이 신뢰하는 정책을 전개하기 위해 데이터를 활용한 객관적인 접근으로 정책수립 과정에서 더욱 정확한 정책을 형성하는데 필요한 데이터 정비와 증거기반의 정책 검토가 더욱 강조되고 있다. 본 연구는 세종시 증거기반 정책수립을 위한 대시보드 구축을 위해 파일 데이터, 오픈 API, 주요 생활지표 데이터, 분야별 정보 데이터, 통계간행물, 통계DB 데이터를 활용하여 데이터 인포그래픽 대시보드를 디자인하였다. 대시보드 디자인은 세종시 생활지표인 사회, 인구, 경제, 부동산, 교통, 환경, 건강, 인프라 지표 데이터를 시각화하고, 데이터를 상호 연계하여 정책수립 및 운영에 주요 사회동향을 파악하는데 적용·활용될 수 있도록 구조적 마크업(HTML), 표현 및 레이아웃(CSS), 자바스크립트 (JavaScript)로 인포그래픽 대시보드를 디자인하였다.
인터넷 발전과 스마트 혁명을 거치며 사용자가 생산하는 데이터양이 중가하고 그 유형도 다양해졌다. 이렇게 방대한 양의 데이터를 분석하고 새로운 가치로 활용한다는 개념의 빅데이터가 새로운 이슈로 부상하였다. 더욱이 빅데이터 속의 콘텐츠들을 검색하기 위해서는 동영상이 포함하고 있는 스토리에 대한 분석과 시각화에 대한 연구가 필요하다. 따라서 본 연구에서는 등장인물들 간의 대화를 분석하여 스토리를 모델링하는 캐릭터 넷(Character-net)이라는 인터페이스를 개발하였다. 캐릭터 넷은 스토리가 있는 동영상을 분석해서 인물들을 자동으로 추출할 수 있고, 등장인물들 간의 관계를 자동으로 모형화 할 수 있다. 이로써 기존 연구와는 다른 방법으로 스토리를 가시화하는 툴의 가능성을 발견할 수 있었다. 하지만 아직 활용하기 어렵고 한 눈에 스토리 특징을 파악하기 어렵다는 단점이 발견되었다. 이러한 캐릭터 넷을 개선하기 위해서는 정보 디자인을 접목하여 해결할 수 있을 것이라 가정하였다. 따라서 본고에서는 먼저 데이터 정보디자인 분야에서의 시각화 디자인들을 간략하게 소개하였다. 나아가 동영상 스토리를 시각화하는 연구 사례들을 살펴보았다. 그리고 캐릭터 넷의 핵심 아이디어와 기존 연구와의 기술적 차이점에 대해 소개한 뒤, 추가적으로 이를 디자인적 솔루션을 접목하여 개선할 수 있는 방법들을 모색하였다.
추천시스템은 사용자의 기호를 파악하여 물품 구매 결정을 도와주는 역할을 할 뿐만 아니라, 비즈니스 전략의 관점에서도 중요한 역할을 하기에 많은 기업과 기관에서 관심을 갖고 있다. 최근에는 다양한 추천시스템 연구 중에서도 NLP와 딥러닝 등을 결합한 하이브리드 추천시스템 연구가 증가하고 있다. NLP를 이용한 감성분석은 사용자 리뷰 데이터가 증가함에 따라 2000년대 중반부터 활용되기 시작하였지만, 기계학습 기반 텍스트 분류를 통해서는 텍스트의 특성을 완전히 고려하기 어렵기 때문에 리뷰의 정보를 식별하기 어려운 단점을 갖고 있다. 본 연구에서는 기계학습의 단점을 보완하기 위하여 BERT 기반 감성분석을 활용한 추천시스템을 제안하고자 한다. 비교 모형은 Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units)를 기반으로 하는 추천 모형이며, 실제 데이터에 대한 분석 결과, BERT를 기반으로 하는 추천시스템의 성과가 가장 우수한 것으로 나타났다.
정보통신기술의 발달로 학술 정보의 양이 기하급수적으로 증가하였고 방대한 양의 텍스트 데이터를 처리하기 위한 자동화된 텍스트 처리의 필요성이 대두되었다. 생의학 문헌에서 생물학적 의미와 치료 효과 등에 대한 정보를 발견해내는 바이오 텍스트 마이닝은 문헌 내의 각 개념들 간의 유의미한 연관성을 발견하여 의학 영역에서 상당한 시간과 비용을 줄여준다. 문헌 기반 발견 연구로 새로운 생의학적 가설들이 발견되었지만 기존의 연구들은 반자동화된 기법으로 전문가의 개입이 필수적이며 원인과 결과의 한가지의 관계만을 밝히는 제한점이 있다. 따라서 본 연구에서는 중간 개념인 B를 다수준으로 확장하여 다양한 관계성을 동시출현 개체와 동사 추출을 통해 확인한다. 그래프 기반의 경로 추론을 통해 각 노드 사이의 관계성을 체계적으로 분석하여 규명할 수 있었으며 새로운 방법론적 시도를 통해 기존에 밝혀지지 않았던 새로운 가설 제시의 가능성을 기대할 수 있다.
교량 유지관리 전략 수립 시 현재 상태를 기반으로 미래 상태를 예측할 수 있어야 하며, 상태예측모델의 신뢰도가 높아질수록 효과적인 유지관리 의사결정이 가능하다. 그러나 인력기반 반복 주기적인 현행유지관리는 관리자가 목표하는 관리(등급)수준의 교량 상태를 정확히 예측하지 못해서 막대한 보수 보강비용이 발생될 가능성이 있고, 합리적인 유지관리 의사결정을 도모하는데 어려움을 겪는다. 이에 따라 본 논문에서는 국내 교량 점검 이력 데이터를 이용하여 불확실성을 고려한 교량 부재별 대표 상태예측모델을 개발하고, 개발된 상태예측모델을 실제 유지관리 대상 교량에 보다 높은 정확도로 적용 가능한 베이지안 업데이트 기법을 제안하였다. 또한, 모니터링 업데이트 상태예측모델 기반 예방적 유지관리가 기존 현행유지관리 대비 비용 효율성 측면에서 유리함을 제안하기 위해 각각의 유지관리비용 산출에 따른 교량 점검 타당성 분석을 수행하였다.
DOLAG KLAUS;GRASSO DARIO;SPRINGEL VOLKER;TKACHEV IGOR
천문학회지
/
제37권5호
/
pp.427-431
/
2004
We use simulations of large-scale structure formation to study the build-up of magnetic fields (MFs) in the intergalactic medium. Our basic assumption is that cosmological MFs grow in a magnetohy-drodynamical (MHD) amplification process driven by structure formation out of a magnetic seed field present at high redshift. This approach is motivated by previous simulations of the MFs in galaxy clusters which, under the same hypothesis that we adopt here, succeeded in reproducing Faraday rotation measurements (RMs) in clusters of galaxies. Our ACDM initial conditions for the dark matter density fluctuations have been statistically constrained by the observed large-scale density field within a sphere of 110 Mpc around the Milky Way, based on the IRAS 1.2-Jy all-sky redshift survey. As a result, the positions and masses of prominent galaxy clusters in our simulation coincide closely with their real counterparts in the Local Universe. We find excellent agreement between RMs of our simulated galaxy clusters and observational data. The improved numerical resolution of our simulations compared to previous work also allows us to study the MF in large-scale filaments, sheets and voids. By tracing the propagation of ultra high energy (UHE) protons in the simulated MF we construct full-sky maps of expected deflection angles of protons with arrival energies $E = 10^{20}\;eV$ and $4 {\times} 10^{19}\;eV$, respectively. Accounting only for the structures within 110 Mpc, we find that strong deflections are only produced if UHE protons cross galaxy clusters. The total area on the sky covered by these structures is however very small. Over still larger distances, multiple crossings of sheets and filaments may give rise to noticeable deflections over a significant fraction of the sky; the exact amount and angular distribution depends on the model adopted for the magnetic seed field. Based on our results we argue that over a large fraction of the sky the deflections are likely to remain smaller than the present experimental angular sensitivity. Therefore, we conclude that forthcoming air shower experiments should be able to locate sources of UHE protons and shed more light on the nature of cosmological MFs.
본 논문에서는 서울시에 속하는 25개의 지역구로부터 측정된 미세먼지 시계열(time series) 정보의 상관도를 정보이론(information theory)의 엔트로피(entropy)로 정량화하고, 이를 그래프로 표현하는 서울시 지역구 미세먼지 전이 모델을 만들어 지역별 유사성과 영향력을 분석하는 방법을 제안한다. 먼저, 각각의 미세먼지 농도 시계열을 가지는 지역구의 모든 쌍마다 전이 엔트로피(transfer entropy)를 계산하여 그래프의 노드간 연결 강도를 구한다. 이 그래프에 전통적인 커뮤니티 검출(community detection) 기법인 모듈성 기반 군집화(on modularity-based clustering) 알고리즘을 적용하여 전체 지역구들에 생성되는 커뮤니티를 검출하였다. 이를 통해 지역적인 근접 정도가 높은 지역과 차량 이동이 많은 지역 간의 미세 먼지 전이성이 높은 것을 확인하였으며, 더불어 제안된 방법은 기존 미세먼지의 기상모델 분석과 다른 정보이론 관점에서의 새로운 미세먼지 분석 방법의 고찰 및 향상된 미세먼지 분석 자료 생성에 활용될 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.