• Title/Summary/Keyword: Data stability

Search Result 4,037, Processing Time 0.036 seconds

GM performance of the characteristics study by ship type for the stability support platform of the electronic inclinometer (전자식 경사계의 안정성 지원 플랫폼을 위한 선종별 GM 성능 특성 연구)

  • Kim, Mi-Joung;Jeon, Sung-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1920-1926
    • /
    • 2021
  • The electronic inclinometer can measure and print various output data related to the ship's heel, rolling cycle, and amplitude. The electronic inclinometer that can support ship stability judgment is equipped with a platform that supports stability for recovery performance, so it is possible to provide data even for small ships that lack ship stability judgment information. GM is an important factor in determining stability, and each type of ship has different GM scope. The purpose of this paper is to analyze GM according to the type of target ship and to review for a stable GM proposal. In addition, it is expected that GM data for each ship type will be embedded in the electronic inclinometer for ship that meets international standards, and will be used as data for securing and reviewing GM for strengthening ship safety

A Study on Parameter Estimation for General Aviation Canard Aircraft

  • Kim, Eung Tai;Seong, Kie-Jeong;Kim, Yeong-Cheol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.425-436
    • /
    • 2015
  • This paper presents the procedures used for estimating the stability and control derivatives of a general aviation canard aircraft from flight data. The maximum likelihood estimation method which accounts for both process and measurement noise was used for the flight data analysis of a four seat canard aircraft, the Firefly. Without relying on the parameter estimation method, several aerodynamic derivatives were obtained by analyzing the steady state flight data. A wind tunnel test, a flight test of a 1/4 scaled remotely controlled model aircraft, and the prediction of aerodynamic coefficients using the USAF Stability and Control Digital Data Compendium (DATCOM), Advanced Aircraft Analysis (AAA), and Computer Fluid Dynamics (CFD) were performed during the development phase of the Firefly and the results were compared with flight determined derivatives of a full scaled flight prototype. A correlation between the results from each method could be used for the design of the canard aircraft as well as for building the aerodynamic database.

Study on Statistical Method for Objective Evaluation of Tunnel Portal Slopes (객관적인 터널 갱구사면 평가를 위한 통계기법 연구)

  • Kwon, O-Il;Baek, Yong;Na, Jong-Hwa;Seo, Yong-Seok;Kim, Gyo-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.634-643
    • /
    • 2006
  • This study was intended to develop a high reliable technique by statistically processing on-site data with a general linear model, providing the basic data for construction, analysis of stability and establishment of maintenance measures for tunnel portal slopes in the future. This study evaluated the stability of a tunnel portal slope using a quantified technique, which is based on a general linear model. The important scores of each independent variable were allocated by using the ranges of the quantified values, based on the predicted coefficient of regression and the scores for categories of each independent variable were allocated so that those are equally spaced. The quantification model obtained from the results of evaluating the total data used for the quantification process provided precise results. In addition, it is expected that a more detail subdivision of response variables and sufficient data would produce a better stability evaluation standard.

  • PDF

Sampled-data Fuzzy Controller for Network-based Systems with Neutral Type Delays (뉴트럴 타입 시간 지연을 갖는 네트워크 기반 시스템의 샘플치 퍼지 제어기 설계)

  • Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.151-156
    • /
    • 2008
  • This paper presents the stability analysis and design for a sampled-data fuzzy control system with neutral type of time delay, which is formed by a nonlinear plant and a sampled-data fuzzy controller connected in a closed loop. The sampling activity and neutral type of time delay will complicate the system dynamics and make the stability analysis much more difficult than that for a pure continuous-time fuzzy control system. Based on the fuzzy-model-based control approach, LMI(linear matrix inequality)-based stability conditions are derived to guarantee the nonlinear networked system stability. An application example will be given to show the merits and design a procedure of the proposed approach.

The Annual Averaged Atmospheric Dispersion Factor and Deposition Factor According to Methods of Atmospheric Stability Classification

  • Jeong, Hae Sun;Jeong, Hyo Joon;Kim, Eun Han;Han, Moon Hee;Hwang, Won Tae
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.260-267
    • /
    • 2016
  • Background: This study analyzes the differences in the annual averaged atmospheric dispersion factor and ground deposition factor produced using two classification methods of atmospheric stability, which are based on a vertical temperature difference and the standard deviation of horizontal wind direction fluctuation. Materials and Methods: Daedeok and Wolsong nuclear sites were chosen for an assessment, and the meteorological data at 10 m were applied to the evaluation of atmospheric stability. The XOQDOQ software program was used to calculate atmospheric dispersion factors and ground deposition factors. The calculated distances were chosen at 400 m, 800 m, 1,200 m, 1,600 m, 2,400 m, and 3,200 m away from the radioactive material release points. Results and Discussion: All of the atmospheric dispersion factors generated using the atmospheric stability based on the vertical temperature difference were shown to be higher than those from the standard deviation of horizontal wind direction fluctuation. On the other hand, the ground deposition factors were shown to be same regardless of the classification method, as they were based on the graph obtained from empirical data presented in the Nuclear Regulatory Commission's Regulatory Guide 1.111, which is unrelated to the atmospheric stability for the ground level release. Conclusion: These results are based on the meteorological data collected over the course of one year at the specified sites; however, the classification method of atmospheric stability using the vertical temperature difference is expected to be more conservative.

Relationship between Center of Pressure and Local Stability of the Lower Joints during Walking in the Elderly Women

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.133-140
    • /
    • 2017
  • Objective: The purpose of this study was to determine the relationship between center of pressure (CoP) and local stability of the lower joints, which was calculated based on approximate entropy (ApEn) during walking in elderly women. Method: Eighteen elderly women were recruited (age: $66.4{\pm}1.2yrs$; mass: $55.4{\pm}8.3kg$; height: $1.56{\pm}0.04m$) for this study. Before collecting data, reflective marker triads composed of 3 non-collinear spheres were attached to the lateral surface of the thigh and shank near the mid-segment to measure motion of the thigh and shank segments. To measure foot motion, reflective markers were placed on the shoe at the heel, head of the fifth metatarsal, and lateral malleolus, and were also placed on the right anterior-superior iliac spine, left anterior-superior iliac spine, and sacrum to observe pelvic motion. During treadmill walking, kinematic data were recorded using 6 infrared cameras (Oqus 300, Qualisys, Sweden) with a 100 Hz sampling frequency and kinetic data were collected from a treadmill (Instrumented Treadmill, Bertec, USA) for 20 strides. From kinematic data, 3D angles of the lower extremity's joint were calculated using Cardan technique and then ApEn were computed for their angles to evaluate local stability. Range of CoP was determined from the kinetic data. Pearson product-moment and Spearman rank correlation coefficient were applied to find relationship between CoP and ApEn. The level of significance was determined at p<.05. Results: There was a negative linear correlation between CoP and ApEn of hip joint adduction-abduction motion (p<.05), but ApEn of other joint motion did not affect the CoP. Conclusion: It was conjectured that ApEn, local stability index, for adduction/abduction of the hip joint during walking could be useful as a fall predictor.

Flow Around a Pipeline and Its Stability in Subsea Trench

  • Lee, Seungbae;Jang, Sung-Wook;Chul H. Jo;Hong, Sung-Guen
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.500-509
    • /
    • 2001
  • Offshore subsea pipelines must be stable against external loadings, which are mostly due to waves and currents. To determine the stability of a subsea pipeline on the seabed, the Morrison equation has been applied with prediction of inertia and drag forces. When the pipeline is placed in a trench, the force acting on it is reduced considerably. Therefore, to consider the stability of a pipeline in a trench, one must employ reduction factors. To investigate the stability of various trenches, we numerically simulated flows over various trenches and compared them with experimental data from PIV (Particle Image Velocimetry) measurements. The present results were produced ar Reynolds numbers ranging from 6$\times$10$^3$to 3$\times$10(sub)5 based on the diameter of the cylinder. Quasi-periodic flow patterns computed by large-eddy simulation were compared with experimental data in terms of mean flow characteristics fro typical trench configurations (W/H=1 and H/D=3, 4). The stability for various trench conditions was addressed in terms of mean amplitudes of oscillating lift and drag, and the reduction factor for each case was suggested for pipeline design.

  • PDF

Analysis of Measurement Data for Stability of Seashore Waste Landfills (해안 폐기물매립지 안정을 위한 계측자료 분석)

  • Jang, Yeon-Soo;Choi, Jong-Sig;Ryu, Hye-Rim;Kim, Dong-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.947-954
    • /
    • 2008
  • Waste landfills built on weak soils have the possibilities of the failure of slope and foundation due to the disposed waste loads. To ensure the landfill will sustain its stability within a limited site area, it's necessary to investigate and understand the characteristics of soft land by identifying the requirements for waste filling and by quantitative field measurement and management of landfills. In this paper, the stability analyses are performed using the field measurement data of Gimpo #2 Metropolitan Landfil. For the stability analysis, Tominaga-Hashimoto method and Kuriharh method, which may be able to manage the stability of the landfill quantitatively, are used.

  • PDF

A Study on the Measurement of Dynamic Stability Derivatives in the Rolling Motion of Aircraft (항공기의 롤운동 동안정미계수 측정에 관한 연구)

  • Cho, Hwan-Kee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.41-46
    • /
    • 2013
  • This paper deals with an experimental technique for the measurement of dynamic stability derivatives in the roll motion of aircraft. Experimental aquisition method for aircraft's dynamic stability derivatives is conducted on the oscillation condition of aircraft model in the subsonic wind tunnel. The oscillation of aircraft model was forced by the oscillation apparatus. The forced oscillation technique is the method getting data from the internal balance inserted into the aircraft model during oscillating it. Dynamic stability derivatives of rolling motion were calculated by data reduction from the measurements of rolling moment, frequency and amplitude of aircraft model due to forced oscillation under wind conditions. Results of experiment is obtained similar one with those of roll dynamic stability derivatives measured in other institutes.

A Modeling and Optimal Site of SMES for Power System Stabilization (계통안정화를 위한 SMES의 모델링과 적정위치 선정)

  • Kim, Jeong-Hun;Im, Jae-Yun;Lee, Jong-Pil
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.494-501
    • /
    • 1999
  • In this research, ANN modeling method of SMES unit is developed for stability analysis, and the optimal site is selected to maximize stabilization effect of SMES unit. The ANN is trained by learning data which is obtained through the application of complex test function into the traditional mathematical mode. In order to verify the validity of proposed modeling method, fault data of sample power system is applied to both the traditional and the ANN models. When the response of traditional and proposed models are compared, the average error for the active and reactive power are 2.51[%], and 0.24[%], respectively. From the comparison, the relevance of proposed method is validated. For the transient stability analysis, an application method of the proposed model is presented, and the transient stability performance index, which describes system stabilization effect of SMES at disturbance, is also suggested, and optimal site selection method of SMES is presented. In the viewpoint of the voltage stability, system stabilization criterion of local bus is presented from P­V curve, and then optimal site which can maximize the voltage stabilization of the whole power system, is decided from the proposed voltage stability performance index.

  • PDF