• Title/Summary/Keyword: Data share

Search Result 2,032, Processing Time 0.029 seconds

Intelligent Motion Pattern Recognition Algorithm for Abnormal Behavior Detections in Unmanned Stores (무인 점포 사용자 이상행동을 탐지하기 위한 지능형 모션 패턴 인식 알고리즘)

  • Young-june Choi;Ji-young Na;Jun-ho Ahn
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.73-80
    • /
    • 2023
  • The recent steep increase in the minimum hourly wage has increased the burden of labor costs, and the share of unmanned stores is increasing in the aftermath of COVID-19. As a result, theft crimes targeting unmanned stores are also increasing, and the "Just Walk Out" system is introduced to prevent such thefts, and LiDAR sensors, weight sensors, etc. are used or manually checked through continuous CCTV monitoring. However, the more expensive sensors are used, the higher the initial cost of operating the store and the higher the cost in many ways, and CCTV verification is difficult for managers to monitor around the clock and is limited in use. In this paper, we would like to propose an AI image processing fusion algorithm that can solve these sensors or human-dependent parts and detect customers who perform abnormal behaviors such as theft at low costs that can be used in unmanned stores and provide cloud-based notifications. In addition, this paper verifies the accuracy of each algorithm based on behavior pattern data collected from unmanned stores through motion capture using mediapipe, object detection using YOLO, and fusion algorithm and proves the performance of the convergence algorithm through various scenario designs.

The Effects of Compensation and Pay Dispersion on Organizational Productivity and Performance: The Case of Korean Professional Basketball Teams (한국프로농구 기업의 임금수준과 임금격차가 구성원의 생산성과 조직성과에 미치는 영향: 한국프로농구를 중심으로)

  • PHILSOO KIM;TAE SUNG JEONG;SANG HYUN LEE
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.2
    • /
    • pp.127-139
    • /
    • 2023
  • Compensation and pay dispersion has been rigorously scrutinized to investigate their impacts on productivity and organizational performance. However, it is difficult to find a systematic study on the systematic dynamics of compensation and pay dispersion effects specifically in the context of Korean venture companies. Venture companies should manage their organizational resources efficiently to maximize their organizational performance through pay structure by efficiently managing the inherent resources. However, we acknowledge that empirical studies on how compensation and pay dispersion affect organizational productivity and performance are rare to find in the Korean context. To overcome this supplement limitation, this study hypothesized that (1) pay and members' productivity are positively related, (2) pay dispersion and organizational productivity have U shaped relationship, and (3) organizational productivity mediates the positive relationship between compensation and organizational performance. Venture companies and professional sports teams share manifold common characteristics such as size, financial circumstances, and operational objectives. We collect 9 seasons (2013~2014 - 2021~2022) of 10 teams' data of Korean Basketball League teams to test our hypotheses. Methodologically, the assessment of our analysis is rendered with PROCESS macro model 58. The statistical results showed that all hypotheses are statistically supported. This study explains how compensation and pay dispersion affect organizational productivity and performance of venture companies in Korea.

  • PDF

Long-term and multidisciplinary research networks on biodiversity and terrestrial ecosystems: findings and insights from Takayama super-site, central Japan

  • Hiroyuki Muraoka;Taku M. Saitoh;Shohei Murayama
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.228-240
    • /
    • 2023
  • Growing complexity in ecosystem structure and functions, under impacts of climate and land-use changes, requires interdisciplinary understandings of processes and the whole-system, and accurate estimates of the changing functions. In the last three decades, observation networks for biodiversity, ecosystems, and ecosystem functions under climate change, have been developed by interested scientists, research institutions and universities. In this paper we will review (1) the development and on-going activities of those observation networks, (2) some outcomes from forest carbon cycle studies at our super-site "Takayama site" in Japan, and (3) a few ideas how we connect in-situ and satellite observations as well as fill observation gaps in the Asia-Oceania region. There have been many intensive research and networking efforts to promote investigations for ecosystem change and functions (e.g., Long-Term Ecological Research Network), measurements of greenhouse gas, heat, and water fluxes (flux network), and biodiversity from genetic to ecosystem level (Biodiversity Observation Network). Combining those in-situ field research data with modeling analysis and satellite remote sensing allows the research communities to up-scale spatially from local to global, and temporally from the past to future. These observation networks oftern use different methodologies and target different scientific disciplines. However growing needs for comprehensive observations to understand the response of biodiversity and ecosystem functions to climate and societal changes at local, national, regional, and global scales are providing opportunities and expectations to network these networks. Among the challenges to produce and share integrated knowledge on climate, ecosystem functions and biodiversity, filling scale-gaps in space and time among the phenomena is crucial. To showcase such efforts, interdisciplinary research at 'Takayama super-site' was reviewed by focusing on studies on forest carbon cycle and phenology. A key approach to respond to multidisciplinary questions is to integrate in-situ field research, ecosystem modeling, and satellite remote sensing by developing cross-scale methodologies at long-term observation field sites called "super-sites". The research approach at 'Takayama site' in Japan showcases this response to the needs of multidisciplinary questions and further development of terrestrial ecosystem research to address environmental change issues from local to national, regional and global scales.

Analysis of Obstacles in the Export Process of Korean Ginseng (고려인삼 수출과정에서의 장애요소 분석 - 중국, 홍콩, 대만에 대한 고려인삼 수출을 중심으로)

  • Hongjian Lin
    • Journal of Ginseng Culture
    • /
    • v.6
    • /
    • pp.116-134
    • /
    • 2024
  • This study aimed to identify the issues in Korean ginseng exports through analyzing the ginseng market. Therefore, the study examined the current ginseng production status in South Korea and China, the major ginseng-producing countries in Northeast Asia, including cultivated areas, harvested areas, and production volumes. For South Korea, specific data on ginseng, such as average prices, operating costs, and production costs, were compiled to demonstrate the production competitiveness of Korean ginseng from a production perspective. Furthermore, as major ginseng-exporting countries, South Korea, China, and Hong Kong's export trends, including export quantities, export values, and export prices, as well as crucial export items and tariff rates, were summarized to showcase the export competitiveness of Korean ginseng. Additionally, this study aimed to understand the consumption patterns of ginseng in China, Hong Kong, and Taiwan by presenting various cases and events in these countries. Based on information related to production, export, and consumption, this study identified obstacles in the ginseng export process, including market downturns, weakened price competitiveness of Korean ginseng, increased market share of competing products like Chinese and Western ginseng, a lack of promotion and marketing, and insufficient development and export of various ginseng products. In response, strategies for overcoming these obstacles were proposed, including diversifying exports, establishing effective production systems, enhancing quality and branding, strengthening promotion and marketing efforts, and developing various ginseng products.

Exploring the Impacts of Bridging and Bonding Social Capital on Travel Experience Sharing Behavior on SNS (사회적 자본이 SNS에서 여행 경험 공유 행동에 미치는 영향)

  • Ju Hyoung Han;Chang-Sup Shim
    • Journal of Service Research and Studies
    • /
    • v.14 no.3
    • /
    • pp.60-78
    • /
    • 2024
  • Social Network Service(SNS) has fundamentally changed the scope, boundaries, and dynamics of social interactions, becoming an integral part of everyday social communication for individuals and significantly altering the decision-making processes of individuals and organizations. Although prior studies have agreed that individual motivations significantly affect travel experience sharing behavior on SNS, different motivations need to be further examined. Also, there is little empirical study that examines the relationships between social capital and motivations. To address these gaps, this study developed a research model to investigate how two types of social capital (i.e., bridging and bonding) influence individual motivations (i.e., self-enhancement and altruism motivations), which in turn contributes to travel experience sharing behavior on SNS. The online survey was conducted from March 3 to March 17, 2021, and 516 responses were included in the data analysis. Structural Equation Modeling was applied to test the hypotheses in a research model. This research provided a comprehensive exploration of the relationship between motivations and social capital, contributing to a better understanding of why tourists share their travel experiences on SNS.

Identifying Voluntary Shadow Workers' Motivation and Behavioral Processes for Posting Online Reviews (자발적 그림자노동자의 온라인 리뷰 포스팅 동기와 행동과정 규명)

  • Sang Cheol Park;Sung Yul Ryoo
    • Information Systems Review
    • /
    • v.26 no.2
    • /
    • pp.23-43
    • /
    • 2024
  • Nowadays, online reviews have become a common word of mouth that many users produce and consume. Posting online reviews is a kind of job that consumers do themselves. Since posting online reviews is not mandatory, it entirely relies on the consumer's voluntary willingness. In this respect, this study aims to describe the motivation for posting online reviews and their behavior processes, such as why online reviewers generate reviews and what types of reviews they create. In this study, we have conducted an in-depth study with 18 participants who have experience in posting reviews. By analyzing interview manuscripts from the grounded theory method approach, we have ultimately presented motivating factors for review posting (mutual reciprocity, material rewards), determinants of review browsing (trust toward review contents, preference for review format), and shadow work (a job that must be done, voluntary data production, consumer's share). We have also proposed the dynamics between core dimensions for theorizing a cycle process of review production and consumption. Our findings could bridge the gap in the existing online review research and offer practical implications for platform companies that need review management.

An Analysis of University Record-Related Regulations and Proposals for Improvement (대학 기록 관련 규정의 현황 분석과 개선 방향)

  • SeonWook Kim
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.35 no.3
    • /
    • pp.105-135
    • /
    • 2024
  • This study aims to analyze the current state of record-related regulations in Korean universities and suggest improvement measures. The research involved a three-step process: exploratory analysis of existing regulations, establishment of classification criteria, and comparative analysis with the National Archives' guidelines. Data were gathered from 66 regulations across 63 universities. The findings reveal that many universities revised their regulations after 2020, often without clear standards, leading to inconsistencies. Notably, many private universities still lack proper record-related regulations. Discrepancies between the National Archives' guidelines and university practices were identified. To address these issues, it is recommended that the National Archives incorporate feedback from universities in guideline revisions, universities enhance their record management by consulting experts and increasing personnel, and record management professionals report their institutional status and share best practices. Accurate terminology use is essential to avoid confusion.

Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news (온라인 언급이 기업 성과에 미치는 영향 분석 : 뉴스 감성분석을 통한 기업별 주가 예측)

  • Jeong, Ji Seon;Kim, Dong Sung;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.37-51
    • /
    • 2015
  • Due to the development of internet technology and the rapid increase of internet data, various studies are actively conducted on how to use and analyze internet data for various purposes. In particular, in recent years, a number of studies have been performed on the applications of text mining techniques in order to overcome the limitations of the current application of structured data. Especially, there are various studies on sentimental analysis to score opinions based on the distribution of polarity such as positivity or negativity of vocabularies or sentences of the texts in documents. As a part of such studies, this study tries to predict ups and downs of stock prices of companies by performing sentimental analysis on news contexts of the particular companies in the Internet. A variety of news on companies is produced online by different economic agents, and it is diffused quickly and accessed easily in the Internet. So, based on inefficient market hypothesis, we can expect that news information of an individual company can be used to predict the fluctuations of stock prices of the company if we apply proper data analysis techniques. However, as the areas of corporate management activity are different, an analysis considering characteristics of each company is required in the analysis of text data based on machine-learning. In addition, since the news including positive or negative information on certain companies have various impacts on other companies or industry fields, an analysis for the prediction of the stock price of each company is necessary. Therefore, this study attempted to predict changes in the stock prices of the individual companies that applied a sentimental analysis of the online news data. Accordingly, this study chose top company in KOSPI 200 as the subjects of the analysis, and collected and analyzed online news data by each company produced for two years on a representative domestic search portal service, Naver. In addition, considering the differences in the meanings of vocabularies for each of the certain economic subjects, it aims to improve performance by building up a lexicon for each individual company and applying that to an analysis. As a result of the analysis, the accuracy of the prediction by each company are different, and the prediction accurate rate turned out to be 56% on average. Comparing the accuracy of the prediction of stock prices on industry sectors, 'energy/chemical', 'consumer goods for living' and 'consumer discretionary' showed a relatively higher accuracy of the prediction of stock prices than other industries, while it was found that the sectors such as 'information technology' and 'shipbuilding/transportation' industry had lower accuracy of prediction. The number of the representative companies in each industry collected was five each, so it is somewhat difficult to generalize, but it could be confirmed that there was a difference in the accuracy of the prediction of stock prices depending on industry sectors. In addition, at the individual company level, the companies such as 'Kangwon Land', 'KT & G' and 'SK Innovation' showed a relatively higher prediction accuracy as compared to other companies, while it showed that the companies such as 'Young Poong', 'LG', 'Samsung Life Insurance', and 'Doosan' had a low prediction accuracy of less than 50%. In this paper, we performed an analysis of the share price performance relative to the prediction of individual companies through the vocabulary of pre-built company to take advantage of the online news information. In this paper, we aim to improve performance of the stock prices prediction, applying online news information, through the stock price prediction of individual companies. Based on this, in the future, it will be possible to find ways to increase the stock price prediction accuracy by complementing the problem of unnecessary words that are added to the sentiment dictionary.

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.

Development of Yóukè Mining System with Yóukè's Travel Demand and Insight Based on Web Search Traffic Information (웹검색 트래픽 정보를 활용한 유커 인바운드 여행 수요 예측 모형 및 유커마이닝 시스템 개발)

  • Choi, Youji;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.155-175
    • /
    • 2017
  • As social data become into the spotlight, mainstream web search engines provide data indicate how many people searched specific keyword: Web Search Traffic data. Web search traffic information is collection of each crowd that search for specific keyword. In a various area, web search traffic can be used as one of useful variables that represent the attention of common users on specific interests. A lot of studies uses web search traffic data to nowcast or forecast social phenomenon such as epidemic prediction, consumer pattern analysis, product life cycle, financial invest modeling and so on. Also web search traffic data have begun to be applied to predict tourist inbound. Proper demand prediction is needed because tourism is high value-added industry as increasing employment and foreign exchange. Among those tourists, especially Chinese tourists: Youke is continuously growing nowadays, Youke has been largest tourist inbound of Korea tourism for many years and tourism profits per one Youke as well. It is important that research into proper demand prediction approaches of Youke in both public and private sector. Accurate tourism demands prediction is important to efficient decision making in a limited resource. This study suggests improved model that reflects latest issue of society by presented the attention from group of individual. Trip abroad is generally high-involvement activity so that potential tourists likely deep into searching for information about their own trip. Web search traffic data presents tourists' attention in the process of preparation their journey instantaneous and dynamic way. So that this study attempted select key words that potential Chinese tourists likely searched out internet. Baidu-Chinese biggest web search engine that share over 80%- provides users with accessing to web search traffic data. Qualitative interview with potential tourists helps us to understand the information search behavior before a trip and identify the keywords for this study. Selected key words of web search traffic are categorized by how much directly related to "Korean Tourism" in a three levels. Classifying categories helps to find out which keyword can explain Youke inbound demands from close one to far one as distance of category. Web search traffic data of each key words gathered by web crawler developed to crawling web search data onto Baidu Index. Using automatically gathered variable data, linear model is designed by multiple regression analysis for suitable for operational application of decision and policy making because of easiness to explanation about variables' effective relationship. After regression linear models have composed, comparing with model composed traditional variables and model additional input web search traffic data variables to traditional model has conducted by significance and R squared. after comparing performance of models, final model is composed. Final regression model has improved explanation and advantage of real-time immediacy and convenience than traditional model. Furthermore, this study demonstrates system intuitively visualized to general use -Youke Mining solution has several functions of tourist decision making including embed final regression model. Youke Mining solution has algorithm based on data science and well-designed simple interface. In the end this research suggests three significant meanings on theoretical, practical and political aspects. Theoretically, Youke Mining system and the model in this research are the first step on the Youke inbound prediction using interactive and instant variable: web search traffic information represents tourists' attention while prepare their trip. Baidu web search traffic data has more than 80% of web search engine market. Practically, Baidu data could represent attention of the potential tourists who prepare their own tour as real-time. Finally, in political way, designed Chinese tourist demands prediction model based on web search traffic can be used to tourism decision making for efficient managing of resource and optimizing opportunity for successful policy.