• Title/Summary/Keyword: Data mining technique

Search Result 640, Processing Time 0.037 seconds

Enhanced Hybrid Privacy Preserving Data Mining Technique

  • Kundeti Naga Prasanthi;M V P Chandra Sekhara Rao;Ch Sudha Sree;P Seshu Babu
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.99-106
    • /
    • 2023
  • Now a days, large volumes of data is accumulating in every field due to increase in capacity of storage devices. These large volumes of data can be applied with data mining for finding useful patterns which can be used for business growth, improving services, improving health conditions etc. Data from different sources can be combined before applying data mining. The data thus gathered can be misused for identity theft, fake credit/debit card transactions, etc. To overcome this, data mining techniques which provide privacy are required. There are several privacy preserving data mining techniques available in literature like randomization, perturbation, anonymization etc. This paper proposes an Enhanced Hybrid Privacy Preserving Data Mining(EHPPDM) technique. The proposed technique provides more privacy of data than existing techniques while providing better classification accuracy. The experimental results show that classification accuracies have increased using EHPPDM technique.

Data Mining Model Analysis for The Risk Factor of Hypertension - By Medical Examination of Health Data -

  • Lee, Jea-Young;SaKong, Joon;Lee, Yong-Won
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.515-527
    • /
    • 2005
  • The data mining is a new approach to extract useful information through effective analysis of huge data in numerous fields. We utilized this data mining technique to analyze medical record of 39,900 people. Whole data were separated by gender first and divided into three groups, including normal, stage 1 hypertension, and stage 2 hypertension. The data from each group were analyzed with data mining technique. Based on the result that we have extracted with this data mining technique, major risk factors for the hypertension are age, BMI score, family history.

  • PDF

A Study on the Data Fusion for Data Enrichment (데이터 보강을 위한 데이터 통합기법에 관한 연구)

  • 정성석;김순영;김현진
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.3
    • /
    • pp.605-617
    • /
    • 2004
  • One of the best important thing in data mining process is the quality of data used. When we perform the mining on data with excellent quality, the potential value of data mining can be improved. In this paper, we propose the data fusion technique for data enrichment that one phase can improve data quality in KDD process. We attempted to add k-NN technique to the regression technique, to improve performance of fusion technique through reduction of the loss of information. Simulations were performed to compare the proposed data fusion technique with the regression technique. As a result, the newly proposed data fusion technique is characterized with low MSE in continuous fusion variables.

Defect Type Prediction Method in Manufacturing Process Using Data Mining Technique (데이터마이닝 기법을 이용한 제조 공정내의 불량항목별 예측방법)

  • Byeon Sung-Kyu;Kang Chang-Wook;Sim Seong-Bo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.2
    • /
    • pp.10-16
    • /
    • 2004
  • Data mining technique is the exploration and analysis, by automatic or semiautomatic means, of large quantities of data in order to discover meaningful patterns and rules. This paper uses a data mining technique for the prediction of defect types in manufacturing Process. The Purpose of this Paper is to model the recognition of defect type Patterns and Prediction of each defect type before it occurs in manufacturing process. The proposed model consists of data handling, defect type analysis, and defect type prediction stages. The performance measurement shows that it is higher in prediction accuracy than logistic regression model.

Artificial Intelligence and Pattern Recognition Using Data Mining Algorithms

  • Al-Shamiri, Abdulkawi Yahya Radman
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.221-232
    • /
    • 2021
  • In recent years, with the existence of huge amounts of data stored in huge databases, the need for developing accurate tools for analyzing data and extracting information and knowledge from the huge and multi-source databases have been increased. Hence, new and modern techniques have emerged that will contribute to the development of all other sciences. Knowledge discovery techniques are among these technologies, one popular technique of knowledge discovery techniques is data mining which aims to knowledge discovery from huge amounts of data. Such modern technologies of knowledge discovery will contribute to the development of all other fields. Data mining is important, interesting technique, and has many different and varied algorithms; Therefore, this paper aims to present overview of data mining, and clarify the most important of those algorithms and their uses.

A Study on the Effective Database Marketing using Data Mining Technique(CHAID) (데이터마이닝 기법(CHAID)을 이용한 효과적인 데이터베이스 마케팅에 관한 연구)

  • 김신곤
    • The Journal of Information Technology and Database
    • /
    • v.6 no.1
    • /
    • pp.89-101
    • /
    • 1999
  • Increasing number of companies recognize that the understanding of customers and their markets is indispensable for their survival and business success. The companies are rapidly increasing the amount of investments to develop customer databases which is the basis for the database marketing activities. Database marketing is closely related to data mining. Data mining is the non-trivial extraction of implicit, previously unknown and potentially useful knowledge or patterns from large data. Data mining applied to database marketing can make a great contribution to reinforce the company's competitiveness and sustainable competitive advantages. This paper develops the classification model to select the most responsible customers from the customer databases for telemarketing system and evaluates the performance of the developed model using LIFT measure. The model employs the decision tree algorithm, i.e., CHAID which is one of the well-known data mining techniques. This paper also represents the effective database marketing strategy by applying the data mining technique to a credit card company's telemarketing system.

  • PDF

A Study on the Analysis of Data Using Association Rule (연관규칙을 이용한 데이터 분석에 관한 연구)

  • 임영문;최영두
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.61
    • /
    • pp.115-126
    • /
    • 2000
  • In General, data mining is defined as the knowledge discovery or extracting hidden necessary information from large databases. Its technique can be applied into decision making, prediction, and information analysis through analyzing of relationship and pattern among data. One of the most important works is to find association rules in data mining. Association Rule is mainly being used in basket analysis. In addition, it has been used in the analysis of web-log and user-pattern. This paper provides the application method in the field of marketing through the analysis of data using association rule as a technique of data mining.

  • PDF

An Evaluation of the Suitability of Data Mining Algorithms for Smart-Home Intelligent-Service Platforms (스마트홈 지능형 서비스 플랫폼을 위한 데이터 마이닝 기법에 대한 적합도 평가)

  • Kim, Kilhwan;Keum, Changsup;Chung, Ki-Sook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.68-77
    • /
    • 2017
  • In order to implement the smart home environment, we need an intelligence service platform that learns the user's life style and behavioral patterns, and recommends appropriate services to the user. The intelligence service platform should embed a couple of effective and efficient data mining algorithms for learning from the data that is gathered from the smart home environment. In this study, we evaluate the suitability of data mining algorithms for smart home intelligent service platforms. In order to do this, we first develop an intelligent service scenario for smart home environment, which is utilized to derive functional and technical requirements for data mining algorithms that is equipped in the smart home intelligent service platform. We then evaluate the suitability of several data mining algorithms by employing the analytic hierarchy process technique. Applying the analytical hierarchy process technique, we first score the importance of functional and technical requirements through a hierarchical structure of pairwise comparisons made by experts, and then assess the suitability of data mining algorithms for each functional and technical requirements. There are several studies for smart home service and platforms, but most of the study have focused on a certain smart home service or a certain service platform implementation. In this study, we focus on the general requirements and suitability of data mining algorithms themselves that are equipped in smart home intelligent service platform. As a result, we provide a general guideline to choose appropriate data mining techniques when building a smart home intelligent service platform.

A Data Mining Technique for Customer Behavior Association Analysis in Cyber Shopping Malls (가상상점에서 고객 행위 연관성 분석을 위한 데이터 마이닝 기법)

  • 김종우;이병헌;이경미;한재룡;강태근;유관종
    • The Journal of Society for e-Business Studies
    • /
    • v.4 no.1
    • /
    • pp.21-36
    • /
    • 1999
  • Using user monitoring techniques on web, marketing decision makers in cyber shopping malls can gather customer behavior data as well as sales transaction data and customer profiles. In this paper, we present a marketing rule extraction technique for customer behavior analysis in cyber shopping malls, The technique is an application of market basket analysis which is a representative data mining technique for extracting association rules. The market basket analysis technique is applied on a customer behavior log table, which provide association rules about web pages in a cyber shopping mall. The extracted association rules can be used for mall layout design, product packaging, web page link design, and product recommendation. A prototype cyber shopping mall with customer monitoring features and a customer behavior analysis algorithm is implemented using Java Web Server, Servlet, JDBC(Java Database Connectivity), and relational database on windows NT.

  • PDF

A Sliding Window Technique for Open Data Mining over Data Streams (개방 데이터 마이닝에 효율적인 이동 윈도우 기법)

  • Chang Joong-Hyuk;Lee Won-Suk
    • The KIPS Transactions:PartD
    • /
    • v.12D no.3 s.99
    • /
    • pp.335-344
    • /
    • 2005
  • Recently open data mining methods focusing on a data stream that is a massive unbounded sequence of data elements continuously generated at a rapid rate are proposed actively. Knowledge embedded in a data stream is likely to be changed over time. Therefore, identifying the recent change of the knowledge quickly can provide valuable information for the analysis of the data stream. This paper proposes a sliding window technique for finding recently frequent itemsets, which is applied efficiently in open data mining. In the proposed technique, its memory usage is kept in a small space by delayed-insertion and pruning operations, and its mining result can be found in a short time since the data elements within its target range are not traversed repeatedly. Moreover, the proposed technique focused in the recent data elements, so that it can catch out the recent change of the data stream.