• 제목/요약/키워드: Data loading

Search Result 2,116, Processing Time 0.027 seconds

A 5-year retrospective clinical study of the Dentium implants

  • Lee, Jeong-Yol;Park, Hyo-Jin;Kim, Jong-Eun;Choi, Yong-Geun;Kim, Young-Soo;Huh, Jung-Bo;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.4
    • /
    • pp.229-235
    • /
    • 2011
  • PURPOSE. The aim of this retrospective study was to evaluate cumulative survival rate (CSR) of Implantium implants followed for 5 years and association between risk factors and the CSR. MATERIALS AND METHODS. A total of two hundred forty-nine Implantium Implants System (Dentium, Seoul, Korea) placed in ninety-five patients from 2004 to 2009 were investigated with several identified risk factors (sex, systemic disease, smoking, alchohol, reason of tooth loss, length, arch (maxilla or mandible), replace tooth type (incisor, canine, premolar or molar) Kennedy classification, prosthodontic type, prosthodontic design, opposite dentition, abutment type, occlusal material, occlusal unit, splint to tooth, cantilever, other surgery). Clinical examination (mobility, percussion, screw loosening, discomfort, etc.) and radiographic examination data were collected from patient records including all problems during follow-up period according to protocols described earlier. Life table analysis was undertaken to examine the CSR. Cox regression method was conducted to assess the association between potential risk factors and overall CSR. RESULTS. Five of 249 implants were failed. Four of these were lost before loading. The 5-year implant cumulative survival rate was 97.37%. Cox regression analysis demonstrated a significant predictive association between overall CSR and systemic disease, smoking, reason of tooth loss, arch, Kennedy classification and prosthodontic design (P<.05). The screw related complication was rare. Two abutment screw fractures were found. Another complications of prosthetic components were porcelain fracture, resin facing fracture and denture fracture (n=19). CONCLUSION. The 5-year CSR of Implantium implants was 97.37 %. Implant survival may be dependent upon systemic disease, smoking reason of tooth loss, arch, Kennedy classification and prosthodontic design (P<.05). The presence of systemic diseases and combination of other surgical procedures may be associated with increased implant failure.

Comparison of marginal bone loss between internal- and external-connection dental implants in posterior areas without periodontal or peri-implant disease

  • Kim, Dae-Hyun;Kim, Hyun Ju;Kim, Sungtae;Koo, Ki-Tae;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.2
    • /
    • pp.103-113
    • /
    • 2018
  • Purpose: The purpose of this retrospective study with 4-12 years of follow-up was to compare the marginal bone loss (MBL) between external-connection (EC) and internal-connection (IC) dental implants in posterior areas without periodontal or peri-implant disease on the adjacent teeth or implants. Additional factors influencing MBL were also evaluated. Methods: This retrospective study was performed using dental records and radiographic data obtained from patients who had undergone dental implant treatment in the posterior area from March 2006 to March 2007. All the implants that were included had follow-up periods of more than 4 years after loading and satisfied the implant success criteria, without any peri-implant or periodontal disease on the adjacent implants or teeth. They were divided into 2 groups: EC and IC. Subgroup comparisons were conducted according to splinting and the use of cement in the restorations. A statistical analysis was performed using the Mann-Whitney U test for comparisons between 2 groups and the Kruskal-Wallis test for comparisons among more than 2 groups. Results: A total of 355 implants in 170 patients (206 EC and 149 IC) fulfilled the inclusion criteria and were analyzed in this study. The mean MBL was 0.47 mm and 0.15 mm in the EC and IC implants, respectively, which was a statistically significant difference (P<0.001). Comparisons according to splinting (MBL of single implants: 0.34 mm, MBL of splinted implants: 0.31 mm, P=0.676) and cement use (MBL of cemented implants: 0.27 mm, MBL of non-cemented implants: 0.35 mm, P=0.178) showed no statistically significant differences in MBL, regardless of the implant connection type. Conclusions: IC implants showed a more favorable bone response regarding MBL in posterior areas without peri-implantitis or periodontal disease.

Effects of Various Acid Etching Methods on the Shear Bond Strength between Iithium Disilicate Ceramic and Composite Resin (다양한 산처리 방법이 lithium Disilicate 도재와 복합레진간의 전단결합강도에 미치는 영향)

  • Kang, Dae-Hyun;Bok, Won-Mi;Song, Jin-Won;Song, Kwang-Yeob;Ahn, Seung-Ggeun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.2
    • /
    • pp.149-159
    • /
    • 2006
  • Statement of problem. Porcelain repair mainly involves replacement with composite resin, but the bond strength between composite resin and all-ceramic coping materials has not been studies extensively. Purpose. The objective of this study was to investigate the influence of composite resin and ceramic etching pattern on shear bond strength of Empress2 ceramic and observe the change of microstructure of ceramic according to etching methods. Material and methods. Eighty-five cylinder shape ceramic specimens (diameter 5mm, IPS Empress 2 core materials) embeded by acrylic resin were used for this study. The ceramic were specimens divided into sixteen experimental groups with 5 specimens in each group and were etched with phosphoric acid(37%, 65%) & hydrofluoric acid (4%, 9%) according to different etching times(30s, 60s, 120s 180s). All etched ceramic surfaces were examined morphologically using SEM(scanning electron microscopy). Etched surfaces of ceramic specimens were coated with silane (Monobond-S) & adhesive(Heliobond) and built up composite resin using Teflon mold. Accomplished specimens were tested under shear loading until fracture on universal testing machine at a crosshead speed 1mm/min; the maximum load at fracture(kg) was recorded. Shear bond strength data were analyzed with one way ANOVA and Duncan tests.(P<.05) Results. Maximum shear bond strength was $30.07{\pm}2.41(kg)$ when the ceramic was etched with 4% hydrofluoric acid at 120s. No significant difference was found between phosphoric etchant group and control group with respect to shear bond strength. Conclusion. Empress 2 ceramic surface was not etched by phosphoric acid, but etched by hydrofluoric acid.

A study on the micromotion between the dental implant and superstructure (임플란트와 상부구조물 사이의 micromotion에 관한 연구)

  • Kim, Ji-Hye;Song, Kwang-Yeob;Jang, Tae-Yeob;Park, Ju-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.1
    • /
    • pp.17-25
    • /
    • 2003
  • Treatment with implants of single tooth missing cases is both functional and esthetic. Although the success rate of single-tooth implant treatments is increasing, sometimes it makes some problems. Problems with single-tooth implant treatments include soft tissue complications, abutment screw fracture, and most commonly, abutment screw loosening, and these involve the instability of the dental implant-superstructure interface. This study investigated and compared dental implant screw joint micromotion of various implant system with external connection or internal connection when tested under simulated clinical loading, Six groups (N=5) were assessed: (1) Branemark AurAdapt (Nobel Biocare, Goteborg, Sweden), (2) Branemark EsthetiCone (Nobel Biocare, Goteborg, Sweden), (3) Neoplant Conical (Neobiotec, Korea), (4) Neoplant UCLA (Neobiotec, Korea), (5) Neoplant 5.5mm Solid (Neobiotec, Korea), and (6) ITI SynOcta (Institute Straumann, Waldenburg, Switzerland). Six identical frameworks were fabricated. Abutment screws were tightened to 32-35 Ncm and occlusal screw were tightened to 15-20 Ncm with an electronic torque controller. A mechanical testing machine applied a compressive cyclic load of 20kg at 10Hz to a contact point on each implant crown. Strain gauge recorded the micromotion of the screw joint interface once a second. Data were selected at 1, 500, 5,000, 10,000, 20,000, 30,000, 40,000 and 50,000 cycle and 2-way ANOVA test was performed to assess the statistical significance. The results of this study were as follows; The micromotion of the implant-superstructure in the interface increased gradually through 50,000 cycles for all implant systems. In the case of the micromotion according to cycle increase, Neoplant Conical and Neoplant UCLA system exhibited significantly increasing micromotion at the implant-superstructure interface (p<0.05), but others not significant. In the case of the micromotion of the implant-superstructure interface at 50,000 cycle, the largest micromotion were recorded in the Branemark EsthetiCone, sequently followed by Neoplant Conical, Neoplant UCLA, Branemark AurAdapt, ITI SynOcta and Neplant Solid. Internal connection system showed smaller micromotion than external connection system. Specially, Neoplant Solid with internal connection system exhibited significantly smaller micromotion than other implant systems except ITI SynOcta with same internal connection system (p<0.05). In the case of external connection, Branemark EsthetiCone and Neoplant Conical system with abutment showed significantly larger micromotion than Branemark AurAdapt without abutment (p<0.05).

Ultimate Stress of Unbonded Tendons in Post-Tensioned Flexural Members (포스트텐션 휨부재에서 비부착긴장재의 극한응력)

  • Lee, Deuck-Hang;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.489-499
    • /
    • 2009
  • It is quite difficult to predict the flexural strength of post-tensioned members with unbonded tendons (unbonded posttensioned members, UPT members) because of debonding behavior between concrete and prestressing tendons, which is different from that with bonded tendons. Despite many previous researches, our understanding on the flexural strength of UPT members is still insufficient, and thus, national codes use different methods to calculate the strength, which quite often give very different results. Therefore, this paper reviews various existing methods, and aims at proposing an improved rational strength model for UPT flexural members having better accuracy. Additionally, a database containing a large number of test data on UPT flexural members has been established and used for verification of the proposed flexural strength model. The analysis results show that the proposed method provides much better accuracy than many existing methods including the rigid-body model that utilizes the assumption of concentrated deformation and plastic hinge length, and that it also gives proper consideration on the effects of primary parameters such as reinforcement ratio, loading pattern, concrete strength, etc. Especially, the proposed method also well predicts the ultimate stress of unbonded tendons of over-reinforced members, which are often possible in construction fields, and high strength concrete members.

Modified S-FPZ Model for a Running Crack in Concrete (콘크리트의 연속적인 균열성장에 대한 수정 특이-파괴진행대 이론)

  • Yon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.802-810
    • /
    • 2003
  • In this paper, the modified singular fracture process zone (S-FPZ) model is proposed to consider variation of a fracture criterion for continuous crack propagation in concrete. The fracture properties of the proposed fracture model are strain energy release rate at a micro-crack tip and crack closure stress (CCS) versus crack opening displacement (COD) relationship in the FPZ. The proposed model can simulate the estimated fracture energy of experimental results. The analysis results of the experimental data shows that specimen geometry and loading condition did not affect the CCS-COD relation. But the strain energy release rate is a function of not only specimen geometry but also crack extension. Until 25 mm crack extension, the strain energy release rate is a constant minimum value, and then it increased linearly to the maximum value. The maximum fracture criterion occurred at the peak load for an large size specimen. The fracture criterion remains the maximum value after the peak load. The variation of the fracture criterion is caused by micro-cracking and micro-crack localizing. The fracture criterion of strain energy release rate can simply be the size effect of concrete fracture, and it can be used to quantify the micro-tracking and micro-crack localizing behaviors of concrete.

A Design and Implementation of HTML5 Vector Map for Individual Purpose Service (개인화 지도 서비스를 위한 HTML5 벡터지도 설계 및 구현)

  • Kwon, Jin-Young;Choi, Se-Hyu
    • Spatial Information Research
    • /
    • v.23 no.4
    • /
    • pp.57-66
    • /
    • 2015
  • At these day, owing to functional limitations and cost issues, used image map in web service have a problem which can not make exactly meet the user needs. This study aims to create an individual map for user suitable purposes using HTML5 technology that implement the vector map creation and its functions with services. The results of this study, the invisible problems of the tilting and rotation functions in image-based map utilizing the existing web environment were solved in HTML5 vector map. And to access the map information, by implementing the function of expressing the background and name data to selectively derive, various results were expressed in the map. Also, as a result of a comparison of performance the time required was measured at 0.88sec which comes in the range of the first loading time between 0.78sec and 7.56sec in a commercial map service, which showed the possibility of its commercialization. compared to 180GB of image maps for the production of a national map index system, the volume to produce a vector map was 2.5GB, a decrease by over 90%, which solved the issue of costs for a storage space. As a result, this study of HTML5 vector map design and implementation presented a plan for providing information suitable for the requirements of the users who use spatial information through utilizing a variety of information and expanding functions.

Characteristics Measurement of Hyperelastic SMA Gear for Micro-jitter Attenuation of X-band Antenna of Compact Advanced Satellite (차세대중형위성 적용가능성 검토를 위한 X-band 안테나의 미소진동 저감용 초탄성 SMA 기어의 특성 측정)

  • Jeon, Young-Hyeon;Back, Hyeon-Gyu;Song, Da-Il;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.784-793
    • /
    • 2017
  • A two-axis gimbal-type X-band antenna mounted on an observation satellite can efficiently transmit high-capacity image data to a ground station regardless of both the satellite position and the orbital motion. However, this X-band antenna induces unnecessary micro-jitter which can degrade the image quality of the high-resolution observation satellite. Therefore, to achieve the high-resolution image quality from the observation satellite, micro-jitters have been required to be isolated. In this study, to resolve aforementioned drawback, we proposed blade gear using a shape memory alloy (SMA) applied to azimuth stage of X-band antenna. To investigate the rotational basic characteristics of the proposed SMA blade gear, we performed rotational static loading test. Futhermore, to evaluate the cycle to failure of the gear, accelerated life test was conducted. The temperature test was conducted to confirm rotational basic characteristics at various temperature conditions. To verify the isolation performance for micro-jitter, we performed micro-jitter measurement test.

Analysis on Reactions of Full-Scale Airframe Static Structural Test (항공기 전기체 정적구조시험의 반력 분석)

  • Shim, Jae-yeul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.195-205
    • /
    • 2020
  • This study addresses analysis on reactions which are induced in restraint system for airframe full-scale static structural test. This system restraints 6 degrees of freedom of a test article. It is valuable to study evaluating test error through analysis on the reactions which include all errors in a test. It is required to calculate fistly right reactions for the evaluation. This study focuses on calculation of the right reactions. The reaction is represented by sum of nominal reaction(Rn) and testing error reactions(Rce, Rerr) and is analyzed by two steps (inital vs relative reaction) in this study. It would evaluate intrinsic error at 0%DLL and error induced from applying test load, separately. Based on analysis using test data of a full-scale static test(canard type aircraft), resultant force of Rces and Rce_rs are distributed within 82.8N while resultant force of Rerr_rs shows to increase upto max. 808N as load level increment. Such well distribution of the Rce within the small range is caused from TMF values characteristics which are well distributed within -30N~40N. Additionally, it is shown through qualitative analysis on three components(X0, Y0, Z0) of the relative reaction(Rerr_r) that the reactions must be calculated with considering deformation of test article to calculate correctly reactions. This study shows also that equations characterizing deformation of components of test article are required to calculate the correct reactions, the equations must include information which will be used to calculate movement of all loading points.

Experimental Studies on the Structural Safety of Pipe-Houses (파이프하우스의 구조안전에 관한 실험적 연구)

  • 김문기;남상운
    • Journal of Bio-Environment Control
    • /
    • v.4 no.1
    • /
    • pp.17-24
    • /
    • 1995
  • This study was carried out to make fundamental data for structural safety test of pipe- houses. Experiment on the stress distribution of pipe- houses was conducted to find suitable structural analysis model by examination of end support conditions of pipe. Besides, the loading test and the pile driving test were done to find pull-out capacity and bearing capacity of pipe on the assumption that pipe is pile foundation. For single span pipe - house, the theoretical results assuming the end support condition of pipe is fixed under ground agreed closely with the experimental results of stress distribution. On the other hand for double span pipe -house, the end support conditions of pipe were fixed support when vertical load is applied, and hinged one when horizontal load is applied. The pull - out capacity and allowable bearing capacity of the pipe portion that was buried in the grounds that were soft soil of paddy field and medium or hard soils of dry field derived from experimental results.

  • PDF