Customized services to a sleep induction for better sleepcare are more effective because of different satisfaction levels to users. The EOG data measured at the frontal lobe when a person blinks his eyes can be used as biometric data because it has different values for each person. The accuracy of measurement is degraded by a noise source, such as toss and turn. Therefore, it is necessary to analyze the noisy data and remove them from normal EOG by filtering. There are low-pass filtering and high-pass filtering as filtering using a frequency band. However, since filtering within a frequency band range is also required for more effective performance, we propose a machine learning model for the filtering of EOG data in this paper as the second filtering method. In addition, optimal values of parameters such as the depth of the hidden layer, the number of nodes of the hidden layer, the activation function, and the dropout were found through experiments, to improve the performance of the machine learning filtering model, and the filtering performance of 95.7% was obtained. Eventually, it is expected that it can be used for effective user identification services by using filtering model for EOG data.
센서 태그의 데이터는 태그 정보와 센싱 정보를 동시에 가지며 미들웨어 또는 상위 레벨에서의 필터링 및 가공이 필요하다는 특정을 가지고 있다. 기존의 필터링 알고리즘에서는 태그데이터와 센서 데이터를 각각 필터링하는 알고리즘이 주로 제안되었다. 그러나 센서 태그의 사용 요구는 점차 증가하고 있으며, 사용요구에 적합한 필터링을 위해서는 센싱 데이터와 RFID 데이터를 통합 처리할 수 있는 새로운 필터링 알고리즘이 필요하다. 본 논문에서 제안하는 필터링 알고리즘에서는 각 태그의 시간 축에 대한 필터링만을 고려하는 것이 아니라 공간적으로 근접한 태그의 데이터도 함께 고려하여 필터링하여 오류 및 이벤트 검출의 정확성을 향상시키고 데이터의 대표값 저장으로 데이터 저장에 필요한 비용을 감소시킬 수 있다.
본 연구는 지면 데이터�V을 이용하여 다중선형 회귀분석에 의한 평면방정식을 도출하여 전역필터링 한 것을 기준으로 전체 데이터�V을 이용하여 도출된 평면방정식으로 전역필터링 한 것과 가상격자별로 평면방정식을 도출하여 지역필터링을 수행한 결과를 분석하여 정확도를 평가하였다. 그 결과 지면 데이터�V을 이용한 전역필터링의 평균정확도를 기준으로 전체 데이터�V을 이용한 전역필터링의 정확도는 약 2~3%정도 떨어지고, 가상격자를 이용한 지역필터링의 정확도는 약 2~4% 떨어지는 것으로 나타났다. 특히 가상격자가 3~4cm일 때 기준자료와 약 2%의 정확도의 차이가 나타낸 것으로 보아 가상격자 사이즈를 라이다 스캔간격의 3~4배 크기로 지정하여 필터링 하는 것이 바람직 할 것으로 판단된다. 따라서 필터링의 적용방법에 따라 평균정확도가 차이가 발생하였으며, 향후 보다 다양한 실제지형을 선정하여 필터링의 정확도에 대한 연구가 필요할 것으로 생각된다.
Journal of the Korean Data and Information Science Society
/
제14권3호
/
pp.441-450
/
2003
Collaborative filtering is one of the most widely used methodologies for recommendation system. Collaborative filtering is based on a data matrix of each customer's preferences and frequently, there exits missing data problem. We introduced two imputation approach (multiple imputation via Markov Chain Monte Carlo method and multiple imputation via bootstrap method) to improve the prediction performance of collaborative filtering and evaluated the performance using EachMovie data.
Collaborative filtering is one of the most common methods that e-commerce sites and Internet information services use to personalize recommendations. Collaborative filtering has the advantage of being able to use even sparse evaluation data to predict preference scores for new products. To date, however, no in-depth investigation has been conducted on how the data sparsity effect in customers' evaluation data affects collaborative filtering-based recommendation performance. In this study, we analyzed the sparsity effect and used a hybrid method based on customers' evaluations and purchases collected from an online bookstore. Results indicated that recommendation performance decreased monotonically as sparsity increased, and that performance was more sensitive to sparsity in evaluation data rather than in purchase data. Results also indicated that the hybrid use of two different types of data (customers' evaluations and purchases) helped to improve the recommendation performance when evaluation data were highly sparse.
본 논문에서는 센서 네트워크의 수명을 길게 하기 위해 각 센서 및 클러스터 헤드에서의 데이터 전송량을 줄이기 위한 방법을 제안한다. 즉, 센서의 에너지 소모를 줄이기 위해 계층적 필터링을 제안한다. 계층적 필터링이란 센서 네트워크를 두 계층으로 나누어 필터링하는 것이다. 1계층 필터링은 클러스터 멤버에서 클러스터 헤드로 데이터를 전송시 필터링을 수행하고, 2계층 필터링은 클러스터 헤드에서 기지국으로 데이터를 전송시 필터링을 수행한다. 이는 일반적으로 필터의 폭을 넓혀 필터링을 많이 하는 것보다 필터링 효율은 증대시키면서 필터링에 따른 데이터 부정확성을 최소한 줄이는 효과를 가진다.
In this paper, we introduce three monitoring filtering techniques which reduce the overheads of dynamic data race detection. It is well known that detecting data races dynamically in multi-threaded programs is quite hard and troublesome task, because the dynamic detection techniques need to monitor all execution of a multi-threaded program and to analyse every conflicting memory and thread operations in the program. Thus, the main drawback of the dynamic analysis for detecting data races is the heavy additional time and space overheads for running the program. For the practicality, we also empirically compare the efficiency of three monitoring filtering techniques. The results using OpenMP benchmarks show that the filtering techniques are practical for dynamic data race detection, since they reduce the average runtime overhead to under 10% of that of the pure detection.
Collaborative filtering, among other recommender systems, has been known as the most successful recommendation technique. However, it requires the user-item rating data, which may not be easily available. As an alternative, some collaborative filtering algorithms have been developed recently by utilizing the market basket data in the form of the binary user-item matrix. Viewing the recommendation scheme as a two-class classification problem, we proposed a new collaborative filtering scheme using a regularized discriminant analysis applied to the binary user-item data. The proposed discriminant model was built in terms of the major principal components and was used for predicting the probability of purchasing a particular item by an active user. The proposed scheme was illustrated with two modified real data sets and its performance was compared with the existing user-based approach in terms of the recommendation precision.
Data filtering is an essential task for improving the energy efficiency of radiofrequency identification (RFID) networks. Among various energy-efficient approaches, clustering-based data filtering is considered to be the most effective solution because data from cluster members can be filtered at cluster heads before being sent to base stations. However, this approach quickly depletes the energy of cluster heads. Furthermore, most previous studies have assumed that readers are fixed and interrogate mobile tags in a workspace. However, there are several applications in which readers are mobile and interrogate fixed tags in a specific area. This article proposes a model for dynamic clustering-based data filtering (DCDF) in mobile RFID networks, where mobile readers are re-clustered periodically and the cluster head role is rotated among the members of each cluster. Simulation results show that DCDF is effective in terms of balancing energy consumption among readers and prolonging the lifetime of the mobile RFID networks.
Wireless sensor network (WSN) is expected to be used in many applications. However, sensor nodes still have some secure problems to use them in the real applications. They are typically deployed on open, wide, and unattended environments. An adversary using these features can easily compromise the deployed sensor nodes and use compromised sensor nodes to inject fabricated data to the sensor network (false data injection attack). The injected fabricated data drains much energy of them and causes a false alarm. To detect and drop the injected fabricated data, a filtering-based security method and adaptive methods are proposed. The number of different partitions is important to make event report since they can make a correctness event report if the representative node does not receive message authentication codes made by the different partition keys. The proposed methods cannot guarantee the detection power since they do not consider the filtering scheme. We proposed clustering method for filtering-based secure methods. Our proposed method uses fuzzy system to enhance the detection power of a cluster.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.