• Title/Summary/Keyword: Data driven method

Search Result 514, Processing Time 0.023 seconds

Reliability analysis and evaluation of LRFD resistance factors for CPT-based design of driven piles

  • Lee, Junhwan;Kim, Minki;Lee, Seung-Hwan
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.17-34
    • /
    • 2009
  • There has been growing agreement that geotechnical reliability-based design (RBD) is necessary for establishing more advanced and integrated design system. In this study, resistance factors for LRFD pile design using CPT results were investigated for axially loaded driven piles. In order to address variability in design methodology, different CPT-based methods and load-settlement criteria, popular in practice, were selected and used for evaluation of resistance factors. A total of 32 data sets from 13 test sites were collected from the literature. In order to maintain the statistical consistency of the data sets, the characteristic pile load capacity was introduced in reliability analysis and evaluation of resistance factors. It was found that values of resistance factors considerably differ for different design methods, load-settlement criteria, and load capacity components. For the total resistance, resistance factors for LCPC method were higher than others, while those for Aoki-Velloso's and Philipponnat's methods were in similar ranges. In respect to load-settlement criteria, 0.1B and Chin's criteria produced higher resistance factors than DeBeer's and Davisson's criteria. Resistance factors for the base and shaft resistances were also presented and analyzed.

Improving Inspection Systems for Radio Stations: An Emphasis on the ISO 2859-1 Sampling Method (무선국 검사제도 개선방안에 관한 연구: ISO 2859-1 샘플링 검사기법을 중심으로)

  • Hyojung Kim;Yuri Kim;Sina Park;Seunghwan Jung;Seongjoon Kim
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.515-530
    • /
    • 2023
  • Purpose : This research aims to develop a data-driven inspection policy for radio stations utilizing the KS Q ISO 2859-1 sampling method, addressing potential regulatory relaxations and impending management challenges. Methods : Using radio station inspection big data from the past six years, we established a simulation model to evaluate the current policy. A new inspection sampling policy framework was designed based on the KS Q ISO 2859-1 method. The study compares the performance of the current and proposed inspection systems, offering insights for an improved inspection strategy. Results : This study introduced a simulation model for inspection system based on the KS Q ISO 2859-1 sampling method. Through various experimental designs, key performance indicators such as non-detection rate and sample proportion were derived, providing foundational data for the new inspection policy. Conclusion : Using big data from radio station inspections, we evaluated current inspection systems and quantitatively compared a new system across diverse scenarios. Our simulation model effectively verified the feasibility and efficiency of the proposed framework. For practical implementation, essential factors such as lot size, inspection cycle, and AQL standards need precise definition and consideration. Enhancing radio station inspections requires a policy-driven approach that factors in socio-economic impacts and solicits feedback from industry participants. Future study should also explore various perspectives related to legislative, institutional, and operational aspects of inspection organizations.

Comparative Study on The Numerical Simulation for The Back-Layer of The Tunnel Fire-Driven Flow with LES and RANS (터널화재유동의 역기류 해석을 위한 LES 및 RANS 결과의 비교 고찰)

  • Jang, Yong-Jun;Kim, Hag-Beom;Kim, Jin-Ho;Han, Seok-Youn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.156-163
    • /
    • 2009
  • In this study, comparative analysis on the back-layer phenomena in the tunnel-fire driven flow is performed using numerical simulation with LES and RANS. FDS(Fire Dynamics Simulator) code is employed to calculate the fire-driven turbulent flow for LES and Smartfire code is used for RANS. Hwang and Wargo's data of scaling tunnel fire experiment are employed to compare with the present numerical simulation. The modeled tunnel is 5.4m(L) ${\times}$ 0.4m(W) ${\times}$ 0.3m(H). Heat Release Rate (HRR) of fire is 3.3kW and ventilation-velocity is 0.33m/s in the main stream. The various grid-distributions are systematically tested with FDS code to analyze the effects of grid size. The LES method with FDS provides an improved back-layer flow behavior in comparison with the RANS (${\kappa}-{\epsilon}$) method by Smartfire. The FDS solvers, however, overpredict the velocity in the center region of flow which is caused by the defects in the tunnel-entrance turbulence strength and in the near-wall turbulent flow in FDS code.

A Three-Dimensional Finite Element Model of Water Circulation (물의 순환에 관한 3차원 유한요소 모형)

  • 정태성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.1
    • /
    • pp.27-36
    • /
    • 1998
  • A three-dimensional numerical model of water circulation has been developed. The model employs the equations on $\sigma$-coordinate and the finite element method for numerical integration. To verify accuracy of the model, a series of numerical experiments have been conducted. The experiments include wind-driven currents in an one-dimensional channel, wind-driven currents in a square lake, and tidal current distributions in Masan-Jinhae Bay. The simulation results showed good agreements with the analytic solutions for wind-driven current and the field data sets in Masan-Jinhae Bay. The model can be used widely for modeling of water circulation in the waters with a complex geometry.

  • PDF

Flight Dynamics Analyses of a Propeller-Driven Airplane (I): Aerodynamic and Inertial Modeling of the Propeller

  • Kim, Chang-Joo;Kim, Sang Ho;Park, TaeSan;Park, Soo Hyung;Lee, Jae Woo;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.345-355
    • /
    • 2014
  • This paper focuses on aerodynamic and inertial modeling of the propeller for its applications in flight dynamics analyses of a propeller-driven airplane. Unsteady aerodynamic and inertial loads generated by the propeller are formulated using the blade element method, where the local velocity and acceleration vectors for each blade element are obtained from exact kinematic relations for general maneuvering conditions. Vortex theory is applied to obtain the flow velocities induced by the propeller wake, which are used in the computation of the aerodynamic forces and moments generated by the propeller and other aerodynamic surfaces. The vortex lattice method is adopted to obtain the induced velocity over the wing and empennage components and the related influence coefficients are computed, taking into account the propeller induced velocities by tracing the wake trajectory trailing from each of the propeller blades. Aerodynamic forces and moments of the fuselage and other aerodynamic surfaces are computed by using the wind tunnel database and applying strip theory to incorporate viscous flow effects. The propeller models proposed in this paper are applied to predict isolated propeller performances under steady flight conditions. Trimmed level forward and turn flights are analyzed to investigate the effects of the propeller on the flight characteristics of a propeller-driven light-sports airplane. Flight test results for a series of maneuvering flights using a scaled model are employed to run the flight dynamic analysis program for the proposed propeller models. The simulations are compared with the flight test results to validate the usefulness of the approach. The resultant good correlations between the two data sets shows the propeller models proposed in this paper can predict flight characteristics with good accuracy.

A Study on Bubble Behavior Generated by an Air-driven Ejector for ABB (Air Bubble Barrier) (II): Comparison of Bubble Behavior with and without Ejector (공기구동 이젝터를 이용한 ABB (Air Bubble Barrier)의 기포거동 특성 연구 (II): 기포거동 특성의 비교 분석)

  • Seo, Hyunduk;Aliyu, Aliyu Musa;Kim, Hyogeum;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.2
    • /
    • pp.59-67
    • /
    • 2017
  • To verify floatability of ABB (Air bubble barrier), we compared bubble swarm behavior with and without the air-driven ejector. Experiment was conducted using the fabricated air-driven ejector with 5 mm nozzle on the bottom of 1 m3 water tank. Reynolds number of air in the nozzle was ranged 1766-13248. We analyzed data with statistical method using image processing, particle mage velocimetry (PIV) and proper orthogonal decomposition (POD) analysis. As a result of POD analysis, there was no significant eigenmode in bubbly flow generated from the ejector. It means that more complex turbulent flows were formed by the ejector, thereby (1) making bubbles finer, (2) promoting three-dimensional energy transfer between bubble and water, and (3) making evenly distributed velocity profile of water. It is concluded that the air-driven ejector could enhance the performance of ABB.

Weighted Finite State Transducer-Based Endpoint Detection Using Probabilistic Decision Logic

  • Chung, Hoon;Lee, Sung Joo;Lee, Yun Keun
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.714-720
    • /
    • 2014
  • In this paper, we propose the use of data-driven probabilistic utterance-level decision logic to improve Weighted Finite State Transducer (WFST)-based endpoint detection. In general, endpoint detection is dealt with using two cascaded decision processes. The first process is frame-level speech/non-speech classification based on statistical hypothesis testing, and the second process is a heuristic-knowledge-based utterance-level speech boundary decision. To handle these two processes within a unified framework, we propose a WFST-based approach. However, a WFST-based approach has the same limitations as conventional approaches in that the utterance-level decision is based on heuristic knowledge and the decision parameters are tuned sequentially. Therefore, to obtain decision knowledge from a speech corpus and optimize the parameters at the same time, we propose the use of data-driven probabilistic utterance-level decision logic. The proposed method reduces the average detection failure rate by about 14% for various noisy-speech corpora collected for an endpoint detection evaluation.

An Empirical Data Driven Optimization Approach By Simulating Human Learning Processes (인간의 학습과정 시뮬레이션에 의한 경험적 데이터를 이용한 최적화 방법)

  • Kim Jinhwa
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.4
    • /
    • pp.117-134
    • /
    • 2004
  • This study suggests a data driven optimization approach, which simulates the models of human learning processes from cognitive sciences. It shows how the human learning processes can be simulated and applied to solving combinatorial optimization problems. The main advantage of using this method is in applying it into problems, which are very difficult to simulate. 'Undecidable' problems are considered as best possible application areas for this suggested approach. The concept of an 'undecidable' problem is redefined. The learning models in human learning and decision-making related to combinatorial optimization in cognitive and neural sciences are designed, simulated, and implemented to solve an optimization problem. We call this approach 'SLO : simulated learning for optimization.' Two different versions of SLO have been designed: SLO with position & link matrix, and SLO with decomposition algorithm. The methods are tested for traveling salespersons problems to show how these approaches derive new solution empirically. The tests show that simulated learning for optimization produces new solutions with better performance empirically. Its performance, compared to other hill-climbing type methods, is relatively good.

A Study on the Noisy Speech Recognition Based on the Data-Driven Model Parameter Compensation (직접데이터 기반의 모델적응 방식을 이용한 잡음음성인식에 관한 연구)

  • Chung, Yong-Joo
    • Speech Sciences
    • /
    • v.11 no.2
    • /
    • pp.247-257
    • /
    • 2004
  • There has been many research efforts to overcome the problems of speech recognition in the noisy conditions. Among them, the model-based compensation methods such as the parallel model combination (PMC) and vector Taylor series (VTS) have been found to perform efficiently compared with the previous speech enhancement methods or the feature-based approaches. In this paper, a data-driven model compensation approach that adapts the HMM(hidden Markv model) parameters for the noisy speech recognition is proposed. Instead of assuming some statistical approximations as in the conventional model-based methods such as the PMC, the statistics necessary for the HMM parameter adaptation is directly estimated by using the Baum-Welch algorithm. The proposed method has shown improved results compared with the PMC for the noisy speech recognition.

  • PDF

Wave-Current Friction in Rough Turbulent Flow (전난류에서 파랑과 해류의 마찰력)

  • 유동훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.226-233
    • /
    • 1994
  • The present paper considers the method to estimate the bottom friction driven by waves and current on rough turbulent flow. Parameter adjusting technique is suggested for the computation of bed shear stress driven by uni-directional flow. and the value of parameter is determined by comparing the computational results against Bijker's laboratory data. For the computation of combined flow bottom shear stress, two methods are presented; one is the modified Bijker approach (BYO Model) and the other is the modified Fredsoe approach (FY Model). both of which are refined by the present writer. Both models are again refined in two aspects, and tested against the Bijker's laboratory data.

  • PDF