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In this paper, we propose the use of data-driven 
probabilistic utterance-level decision logic to improve 
Weighted Finite State Transducer (WFST)-based 
endpoint detection. In general, endpoint detection is dealt 
with using two cascaded decision processes. The first 
process is frame-level speech/non-speech classification 
based on statistical hypothesis testing, and the second 
process is a heuristic-knowledge-based utterance-level 
speech boundary decision. To handle these two processes 
within a unified framework, we propose a WFST-based 
approach. However, a WFST-based approach has the 
same limitations as conventional approaches in that the 
utterance-level decision is based on heuristic knowledge 
and the decision parameters are tuned sequentially. 
Therefore, to obtain decision knowledge from a speech 
corpus and optimize the parameters at the same time, we 
propose the use of data-driven probabilistic utterance-
level decision logic. The proposed method reduces the 
average detection failure rate by about 14% for various 
noisy-speech corpora collected for an endpoint detection 
evaluation. 
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I. Introduction 

The endpoint detection problem is conventionally dealt with 
using two cascaded decision processes. The first process     
is frame-level speech/non-speech classification based on 
statistical hypothesis testing, and the second process involves 
utterance-level speech boundary decision based on heuristic 
knowledge. The overall performance of endpoint detection is 
determined through these two processes. However, most 
research activities have focused on improving the frame-level 
decision performance by developing robust features [1]–[2], 
feature combinations [3], and modeling approaches [4]–[9], 
while little attention has been paid to utterance-level decision, 
integrating both decision processes, or improving both 
processes at the same time. This is because the statistical 
approach provides a way to optimize frame-level decision 
parameters systematically, whereas a heuristic-knowledge-
based approach makes it difficult to define and optimize 
utterance-level decision parameters. In addition, it is also hard 
to integrate the two different decision processes. 

To solve the integration issue, we proposed Weighted Finite 
State Transducer (WFST)-based endpoint detection in our 
previous work [10]. In the proposed WFST-based endpoint 
detection, both the frame-level decision result and utterance-
level heuristic knowledge are represented in WFSTs, and the 
detection state is determined by composition and best-path 
search operations. The WFST-based approach provides a 
straightforward way to integrate the two decision processes. 
However, the proposed WFST-based approach has the same 
limitations as in conventional approaches in that the utterance-
level decision is based on heuristic knowledge and the decision 
parameters are tuned sequentially. 

To solve these problems, we propose the use of data-driven 
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probabilistic utterance-level decision logic by modeling the 
quantized speech/non-speech likelihood ratio trajectory from a 
segmented speech corpus. The remainder of this paper is 
organized as follows. In Section II, we briefly review 
conventional endpoint detection and WFST-based endpoint 
detection. In Section III, we describe how to train probabilistic 
utterance-level decision logic from a speech corpus in detail. 
Finally, in Section IV, experimental results of the endpoint 
detection test corpus are provided.  

II. Background 

In this section, we briefly review both conventional endpoint 
detection and the proposed WFST-based approach. 

1. Conventional Endpoint Detection 

One of the most widely used frame-level decision methods 
in recent years is likelihood ratio testing (LRT)-based 
speech/non-speech classification [5]. 
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where xt is a feature vector at frame t, H1 and H0 are speech and 
non-speech hypotheses, respectively, u(·) is a unit step function, 
η is a decision threshold, and ot is a frame-level decision result 
at frame t.  

For a frame-level decision sequence, 1 2, , ,T
TO o o o= … , 

an utterance-level decision makes certain whether the decision 
sequence satisfies the condition to be classified as a speech 
segment. This condition is usually based on heuristic 
knowledge, and Fig. 1 shows widely used decision logic [2]. 

Here, “Gap” is an integer indicating the required number of 
frames from a detected endpoint to the actual end of the speech. 
In practice, such an utterance-level decision is implemented on 
a finite state machine (FSM) as in the following: 
 

 

Fig. 1. Utterance-level FSM example. 
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 ( ), , , , ,A Q I Fρ= Σ              (4) 

where Σ is an input alphabet, Q is a set of states, I is an initial 
state, ρ is a state transition function, and F is a set of final states. 

2. WFST-Based Endpoint Detection 

A WFST is an FSM with state transitions labelled with input 
and output symbols, where each transition has an associated 
weighting; defined as follows: 

 ( )Σ,Δ, , , , , , ,T Q I F E λ ρ=             (5) 

where Σ is a finite input alphabet, Δ is a finite output alphabet, 
Q is a set of states, I is a set of initial states, F is a set of final 
states, E is a finite set of transitions, λ is the initial weight 
function, and ρ is the final weight function [11]–[12].  

WFST-based endpoint detection was proposed to deal with 
two cascaded decision processes under a unified framework, 
where (1), (2), and (4) are represented in WFSTs, respectively, 
and the detection state is determined through composition and 
best-path operations as follows: 

( )bestpath ,P F U=               (6) 

where F is a frame-level WFST representing equations (1) and 
(2), and where U is an utterance-level WFST representing 
equation (4) with two additional output symbols to mark the 
begin-of-utterance (BOU) and end-of-utterance (EOU). The 
endpoint is detected if the output symbol of the last transition of 
the best path P, o(et), satisfies the following condition: 

( ) .to e EOU=                 (7) 

As formulated in (6), the performance of the WFST-based 
endpoint detection is determined by the two WFSTs. Therefore, 
assuming that the frame-level decision model is θF and the 
utterance-level decision model is θU, the WFST-based endpoint 
detection model θ is defined as follows: 
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As previously stated, there are many research activities on xt, 

1( | ),tp x H and 0( | ).tp x H  In this paper, we focus on the 
defining and optimizing of the parameters u(·), η, and θU.  

III. Probabilistic Utterance-Level Decision Logic 

The fundamental idea of this work is that we handle a frame-
level decision as multi-level quantization and an utterance-level 
decision as a symbol matching process to detect a pre-defined 
symbol sequence. Figure 2 illustrates an endpoint detection  
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Fig. 2. Endpoint detection process: (a) an input signal, (b) 
speech/non-speech LLR, (c) frame-level decision 
results, and (d) utterance-level decision result. 
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process where (a) is an input signal collected at a bus stop and 
(b) is a speech/non-speech log-likelihood ratio (LLR) for (a). In 
a conventional approach, (c) is a frame-level speech/non-
speech binary decision sequence and (d) is an utterance-level 
decision result, where an output of “1” means that an input 
frame-level decision sequence traverses to an EDU state in an 
FSM, such as depicted in Fig. 1. However, in the proposed 
approach, the two decision processes are treated differently. 
First, the frame-level decision sequence shown in Fig. 2(c) is 
regarded as an output of 1-bit quantization for Fig. 2(b). 
Second, the utterance-level decision is regarded as a process to 
detect a discrete symbol sequence if the sequence is a 
predefined sequence. 

1. Speech/Non-speech Likelihood Ratio Quantization 

In most cases, endpoint detection is considered from the 
aspect of voice activity detection (VAD). However, VAD 
focuses on making an accurate frame-level speech/non-speech 
decision, whereas endpoint detection has to focus on 
improving the accuracy of an utterance-level speech segment 
decision. An accurate VAD is necessary to improve the 
endpoint detection performance, but it is well known that VAD 
errors are inevitable and that they degrade the utterance-level 
decision accuracy. In a statistical model–based VAD or frame-
level decision, the frame-level decision errors are affected by 
the parameters θF in (8). Among them, in this paper, we focus 
on the binary decision related parameters, u(·) and η. From a 
functional point of view, a binary decision is like a 1-bit 
quantization since it outputs a zero or one for an input  

 

Fig. 3. Speech/non-speech LLR quantization examples: (a) 
speech/non-speech LLR, (b) 1-bit quantized LLR, 
(c) 2-bit quantized LLR, and (d) 5-bit quantized LLR. 
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speech/non-speech likelihood ratio. This means that the 
propagated frame-level decision errors can be controlled by 
replacing the binary decision with a general Q-bit quantization 
scheme as follows: 
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where ω is the step size, max(L) is the maximum value for all 
l(xt) – η, and η is the same frame-level decision threshold in (3). 
The step size ω controls the quantization errors. The smaller 
the step size used, the smaller the quantization errors that occur. 
Equation (9) assigns H0

 
to a frame whose LLR is lower than η; 

otherwise, Hn, where n > 0 according to ω, is assigned. Figure 
3 shows an example of a quantized speech/non-speech 
likelihood ratio: (a) is the same speech/non-speech LLR as in 
Fig. 2(b), (b) is a 1-bit quantized LLR sequence, (c) is a 2-bit 
quantized LLR sequence, and (d) is a 5-bit quantized LLR 
sequence. In this section, we compare two items to a 
conventional approach. First, Figs. 2(c) and 3(b) show the 
same results, which indicate that a frame-level speech/non-
speech binary decision can be implemented using 1-bit 
quantization. Second, as shown in Figs. 3(b) through 3(d), the 
more quantization bits that are used, the less quantization errors 
that occur, which means that propagated frame-level decision 
errors in an utterance-level decision can be controlled by 
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varying the quantization size. 

2. N-gram-based Utterance-Level Decision Knowledge 

In conventional endpoint detection, utterance-level decision 
logic is usually implemented using heuristic knowledge. We 
have to question whether such a heuristic approach is effective 
in defining boundary detection knowledge. In addition, in the 
proposed frame-level Q-bit quantization, it is more difficult to 
define heuristic knowledge since speech/non-speech LLRs are 
represented as a sequence of Hn instead of two states, H0 and 
H1. Therefore, to solve such problems, we propose the use of a 
training scheme in making utterance-level decision logic. To 
train utterance-level decision logic from a speech corpus, we 
assume that an utterance-level decision is simply a symbol 
matcher to detect a predefined symbol sequence for a 
transmitted symbol sequence through frame-level Q-bit 
quantization. For example, assuming that a bit sequence in  
Fig. 3(b), 3(c), or 3(d) is transmitted to an utterance-level 
decision, the utterance-level decision has to make sure that the 
bit sequence is valid. In this work, we implement this idea 
using the WFST framework. As formulated in (6), for an input 
symbol sequence OT to be detected through WFST-based 
endpoint detection, an input projection of an utterance-level 
WFST has to at least include OT for a successful composition. 
In other words, an utterance WFST used to detect a discrete 
symbol sequence OT is one whose input sequence is the same 
as OT. Therefore, assuming that Ui is a WFST for the ith 
quantized speech/non-speech likelihood ratio sequence, an 
utterance-level WFST can be obtained by minimizing the 
WFST that combines all Ui as follows: 

{ }1min ,N
B i i EU U U U=⊕⊗ ⊗=        (11) 

where UB

 
and UE

 
are WFSTs used to mark a BOU and EOU, 

which are composed of a single transition whose input symbol 
is <eps> and output symbol is BOU or EOU. For example, 
there are three quantized speech/non-speech likelihood ratio 
sequences O1, O2, and O3 as follows: 
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An utterance-level WFST obtained by (11) is depicted in Fig. 4. 
In training an utterance-level WFST, we have to consider 

practical issues such as different trajectory lengths and unseen 
trajectories. To cope with these problems, we divide each 
quantized trajectory as a sequence of quantized subtrajectories 
having the same length N and represent an utterance-level 
WFST U as a closure of quantized subtrajectories 

* ,SU U= where the quantized subtrajectory WFST US is  

 

Fig. 4. Utterance-level WFST example. 
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Fig. 5. Example of 2-gram-based utterance-level WFST. 
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Table 1. Comparison between conventional and proposed 
approaches. 

Decision level Conventional approach Proposed approach 

Frame Binary Q-bit quantization 

Utterance Heuristic FSM Data-driven N-gram 
 

 
estimated with N-gram ( )1 2, , , tP o o o…  as follows: 
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where ot is the quantized speech/non-speech likelihood ratio at 
time t. Figure 5 shows a 2-gram-based utterance-level WFST 
corresponding to Fig. 4. 

In summary, Table 1 lists the differences in the proposed 
approach as compared to a conventional method. The proposed 
approach uses Q-bit quantization at the frame level to control 
decision errors and N-gram-based decision logic at the 
utterance level to represent the trajectory structure in a speech 
corpus. 

The WFST-based endpoint detection in (6) can then be 
generalized by decision threshold η, step size ω, and sub-
trajectory length N as follows: 

( , , ) bestpath( ( , ) ( )).P N F U Nω η ω η=      (14) 

IV. Experimental Results 

1. Endpoint Detection Test Corpus 

The proposed approach is evaluated on an in-house 
endpoint-detection corpus for a Korean voice search. The 
corpus is composed of 14,000 utterances in total — about 23.5 
hours’ worth of samples collected from various real-noise  
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Fig. 6. SNR histogram of each noise condition. 
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scenarios, such as bus stops, restaurants, bars, homes, and 
subways, and covering various signal-to-noise ratios (SNRs). 
Figure 6 displays the SNR histogram of each noise condition. 

In this experiment, we used 12,600 utterances to train the 
speech and non-speech Gaussian mixture models (GMMs) to 
measure the frame-by-frame speech/non-speech likelihood 
ratio and utterance-level decision logic; and we used 1,400 
utterances for testing. The corpus signal is sampled at 16 kHz, 
and we used 39-dimensional Mel frequency cepstrum 
coefficients (MFCCs) composed of 12-dimensional static 
MFCCs, cepstral energy, and their delta and acceleration as 
features for speech/non-speech discrimination. In this 
experiment, we extract feature vectors at every 10 ms for a  
20 ms analysis window and use GMMs with 32 components. 
The performance is measured based on the detection failure 
rate (DFR), which is defined as follows: 

 # 100,
#
of failed uttrsDFR
of total uttrs

= ×           (15) 

where the failure count increases if both the beginning and 
ending utterance points are not within 0.5 s. In actuality, DFR 
measures any false detection or false rejection errors.  

2. Baseline Endpoint Detection Performance 

In a baseline system evaluation, we use similar utterance-
level decision logic as depicted in Fig. 1, and the performance 
is tuned experimentally by optimizing the frame-level decision 
threshold, minimum speech frame count, and hang-over frame 
count. Figure 7 shows the experimental results of the baseline 
system for a different minimum speech frame count, Tm, hang-
over frame count, Th, and different frame-level decision 
thresholds.  

For a baseline system evaluation, we obtained a minimum 
DFR of 22.07% by setting the frame-level decision threshold to 
six, the minimum speech frame count to ten frames, and the  

 

Fig. 7. DFR of baseline system. 
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Fig. 8. DFR of proposed approach. 
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hang-over frame count to four frames. 

3. Proposed Endpoint Detection Performance 

The performance of the proposed approach is measured for 
quantization bit size Q and subtrajectory history length N. 
Figure 8 shows the experimental results. 

As can be seen in Fig. 8, DFR tends to decrease in 
proportion to both the bit size Q and the history length N. This 
is because Q is related to a short-term decision error and N is  
 

Table 2. DFR for noise conditions. 

Noise condition # of Test uttrs Baseline Proposed 

Bus stop 191 20.42 14.14 

Restaurant 173 16.18 9.82 

Bar 44 40.91 29.54 

Home 386 46.89 37.82 

Subway 211 23.22 15.54 
 



ETRI Journal, Volume 36, Number 5, October 2014 Hoon Chung et al.   719 
http://dx.doi.org/10.4218/etrij.14.2214.0030 

Table 3. DFR for SNRs. 

SNR # of Test uttrs Baseline Proposed 

0 45 42.86 38.10 

5 142 35.32 37.00 

10 268 31.34 29.48 

15 550 16.05 11.19 
 

 
related to a long-term variation. For the proposed approach, we 
achieve a minimum DFR of 19.0% at Q = 5 and N = 5.  
Tables 2 and 3 show the best overall DFRs of the baseline 
approach and the proposed one for noise conditions and SNRs. 
The proposed approach outperforms the baseline approach 
under most noisy conditions. 

V. Conclusion 

To improve the overall performance of WFST-based 
endpoint detection, we proposed the use of probabilistic 
utterance-level decision logic derived from quantized 
speech/non-speech likelihood ratio trajectories. In the proposed 
approach, a frame-level speech/non-speech binary decision is 
regarded as a quantized likelihood ratio since the final decision 
is made at the utterance-level. Therefore, to reduce quantization 
errors, a frame-level binary decision is generalized using Q-bit 
quantization, and a heuristic-knowledge-based utterance-level 
WFST is replaced with an N-gram-based quantized 
subtrajectory model to represent quantized discrete symbol 
sequences. Under the proposed approach, decision-related 
parameters are optimized from a speech segmented corpus to 
maximize the overall performance. The experimental results 
show that the proposed method reduces the failure rate by 
about 14%. For our future work, we plan to use a 
discriminative training scheme in designing the frame-level 
quantization and training the utterance-level decision so as to 
reduce error rate. 

References 

[1] T. Fukuda, O. Ichikawa, and M. Nishimura, “Long-Term 
Spectro-Temporal and Static Harmonic Features for Voice 
Activity Detection,” IEEE J. Sel. Topics Signal Process., vol. 4, 
no. 5, Oct. 2010, pp. 834–844. 

[2] S.J. Lee et al., “Intra- and Inter-frame Features for Automatic 
Speech Recognition,” ETRI J., vol. 36, no. 3, June 2014, pp. 514–
517. 

[3] M. Fujimoto, K. Ishizuka, and T. Nakatani, “A Voice Activity 
Detection Based on the Adaptive Integration of Multiple Speech 

Features and a Signal Decision Scheme,” IEEE Int. Conf. Acoust., 
Speech, Signal Process., Las Vegas, NV, USA, Mar. 31–Apr. 4, 
2008, pp. 4441–4444. 

[4] J. Sohn, N.S. Kim, and W. Sung, “A Statistical Model-Based 
Voice Activity Detection,” IEEE Signal Process. Lett., vol. 6, no. 
1, Jan. 1999, pp. 1–3. 

[5] J. Ramirez et al., “Statistical Voice Activity Detection Using a 
Multiple Observation Likelihood Ratio Test,” IEEE Signal 
Process. Lett., vol. 12, no. 10, Oct. 2005, pp. 689–692. 

[6] T. Hughes and K. Mierle, “Recurrent Neural Networks for Voice 
Activity Detection,” IEEE Int. Conf. Acoust., Speech, Signal 
Process., Vancouver, Canada, May 26–31, 2013, pp. 7378–7382. 

[7] Q.H. Joe et al., “Statistical Model-Based Voice Activity Detection 
Using Support Vector Machine,” IET Signal Process., vol. 3, no. 
3, May 2009, pp. 205–210. 

[8] D. Enqing et al., “Applying Support Vector Machines to Voice 
Activity Detection,” IEEE Int. Conf. Signal Process., Beijing, 
China, vol. 2, Aug. 26–30, 2002, pp. 1124–1127. 

[9] C.Y. Park et al., “Integration of Sporadic Noise Model in 
POMDP-Based Voice Activity Detection,” IEEE Int. Conf. 
Acoust., Speech, Signal Process., Dallas, TX, USA, Mar. 14–19, 
2010, pp. 4486–4489. 

[10] H. Chung, S.J. Lee, and Y.K. Lee, “Endpoint Detection Using 
Weighted Finite State Transducer,” Proc. INTERSPEECH, Lyon, 
France, Sept. 25–29, 2013, pp. 700–703. 

[11] M. Mohri, F. Pereira, and M. Riley, “Weighted Automata in Text 
and Speech Processing,” European Conf. AI. Intell., Budapest, 
Hungary, Aug. 13, 1996, pp. 228–231. 

[12] C. Allauzen et al., “A General and Efficient Weighted Finite-
State Transducer Library,” Proc. CIAA, Prague, Czech Republic, 
July 16–18, 2007, pp. 11–23. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



720   Hoon Chung et al. ETRI Journal, Volume 36, Number 5, October 2014 
http://dx.doi.org/10.4218/etrij.14.2214.0030 

Hoon Chung received his BS, MS, and PhD 
degrees in electronics engineering from 
Kangwon National University, Chuncheon, Rep. 
of Korea, in 1994, 1996, and 2007 respectively. 
He joined the Electronics and 
Telecommunication Research Institute, Daejeon, 
Rep. of Korea, in 2004 and is currently a 

research member of their Automatic Speech Translation and Artificial 
Intelligence Research Center. His current research interests include fast 
decoding, robust speech recognition, and large vocabulary speech-
recognition systems. 

  
Sung Joo Lee received his BS and MS degrees 
in electronic engineering from Pusan National 
University, Rep. of Korea, in 1996 and 1998, 
respectively. After graduation, he joined 
Hyundai Electronics Multi-media Research 
Center, Incheon, Rep. of Korea. Since 2000, he 
has been with the Electronics and 

Telecommunication Research Institute, Daejeon, Rep. of Korea and is 
a principle researcher at their Automatic Speech Translation and 
Artificial Intelligence Research Center. His research interests include 
environment-robust speech signal processing and speech recognition. 
  

Yun Keun Lee received his BS and MS 
degrees in electronic engineering from Seoul 
National University, Rep. of Korea, in 1986, 
and Korea Advanced Institute of Science and 
Technology (KAIST), Daejeon, Rep. of Korea, 
in 1988, respectively. He received his PhD in 
information and communication engineering 

from KAIST, Seoul, Rep. of Korea, in 1998. Currently, he is in charge 
of the Automatic Speech Translation and Artificial Intelligence 
Research Center at the Electronics and Telecommunication Research 
Institute, Daejeon, Rep. of Korea. His research interests include speech 
recognition, speech synthesis, and speech enhancement. 
 
  
  
  
  
  

 


