• 제목/요약/키워드: Data driven method

검색결과 514건 처리시간 0.035초

Generating a Ball Sport Scene in a Virtual Environment

  • Choi, Jongin;Kim, Sookyun;Kim, Sunjeong;Kang, Shinjin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권11호
    • /
    • pp.5512-5526
    • /
    • 2019
  • In sports video games, especially ball games, motion capture techniques are used to reproduce the ball-driven performances. The amount of motion data needed to create different situations in which athletes exchange balls is bound to increase exponentially with resolution. This paper proposes how avatars in virtual worlds can not only imitate professional athletes in ball games, but also create and edit their actions effectively. First, various ball-handling movements are recorded using motion sensors. We do not really have to control an actual ball; imitating the motions is enough. Next, motion is created by specifying what to pass the ball through, and then making motion to handle the ball in front of the motion sensor. The ball's occupant then passes the ball to the user-specified target through a motion that imitates the user's, and the process is repeated. The method proposed can be used as a convenient user interface for motion based games for players who handle balls.

Vibration-based identification of rotating blades using Rodrigues' rotation formula from a 3-D measurement

  • Loh, Chin-Hsiung;Huang, Yu-Ting;Hsiung, Wan-Ying;Yang, Yuan-Sen;Loh, Kenneth J.
    • Wind and Structures
    • /
    • 제21권6호
    • /
    • pp.677-691
    • /
    • 2015
  • In this study, the geometrical setup of a turbine blade is tracked. A research-scale rotating turbine blade system is setup with a single 3-axes accelerometer mounted on one of the blades. The turbine system is rotated by a controlled motor. The tilt and rolling angles of the rotating blade under operating conditions are determined from the response measurement of the single accelerometer. Data acquisition is achieved using a prototype wireless sensing system. First, the Rodrigues' rotation formula and an optimization algorithm are used to track the blade rolling angle and pitching angles of the turbine blade system. In addition, the blade flapwise natural frequency is identified by removing the rotation-related response induced by gravity and centrifuge force. To verify the result of calculations, a covariance-driven stochastic subspace identification method (SSI-COV) is applied to the vibration measurements of the blades to determine the system natural frequencies. It is thus proven that by using a single sensor and through a series of coordinate transformations and the Rodrigues' rotation formula, the geometrical setup of the blade can be tracked and the blade flapwise vibration frequency can be determined successfully.

Dynamic response and design of a skirted strip foundation subjected to vertical vibration

  • Alzabeebee, Saif
    • Geomechanics and Engineering
    • /
    • 제20권4호
    • /
    • pp.345-358
    • /
    • 2020
  • Numerous studies have repeatedly demonstrated the efficiency of using skirts to increase the bearing capacity and to reduce settlement of shallow foundations subjected to static loads. However, no efforts have been made to study the efficiency of using these skirts to reduce settlement produced by machine vibration, although machines are very sensitive to settlement and the foundations of these machines should be designed properly to ensure that the settlement produced due to machine vibration is very small. This research has been conducted to investigate the efficiency of using skirts as a technique to reduce the settlement of a strip foundation subjected to machine vibration. A two-dimensional finite element model has been developed, validated, and employed to achieve the aim of the study. The results of the analyses showed that the use of skirts reduces the settlement produced due to machine vibration. However, the percentage decrease of the settlement is remarkably influenced by the density of the soil and the frequency of vibration, where it rises as the frequency of vibration increases and declines as the soil density rises. It was also found that increasing skirt length increases the percentage decrease of the settlement. Importantly, the results obtained from the analyses have been utilized to derive new dynamic impedance values that implicitly consider the presence of skirts. Finally, novel design equations of dynamic impedance that implicitly account to the effect of the skirts have been derived and validated utilizing a new intelligent data driven method. These new equations can be used in future designs of skirted strip foundations subjected to machine vibration.

Performances of the Directional Control Solenoid Valve for a Combined Power Plant

  • Kim, Chul-Jin;Yun, Yu-Seong;Kim, Do-Tae;Lee, Il-Young
    • International Journal of Safety
    • /
    • 제11권2호
    • /
    • pp.10-14
    • /
    • 2012
  • Recently, the combined power plants are refocused rapidly as a replaceable energy system of the nuclear power plant. The large turbine is revolved highly at 1800~3600 rpm. Thus, the turbine speed should be monitored with mechanical and electrical method for a safety. The electrical cutoff valve which blocks the flow channel with the electrical signal is with a built in. The aim of this study is to develop a manufacturing technology through by the localization of a solenoid actuated directional control valve. Especially the results show performances of the solenoid valve by the experiments and modeling and the reliability estimation. Applied load port pressure was changed rapidly on the form of a quadratic curve over time. And in the cases of square waveform when 0~100 V and 20~120 V input voltage, it was driven on a stable state until 13.4 Hz and 16.6 Hz, respectively. We think that this study will give useful data for the electricity safety system of the combined power plant gas turbine.

연속공정 자동화를 위한 Function block diagram형 제어언어의 설계 및 구현 (Design and Implementation of a Control Language for Continuous Process Automation : Function Block Diagram Approach)

  • 조영조;윤태웅;이준수;오상록;최익;김광배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.226-231
    • /
    • 1991
  • A graphic control language using function block diagram approach is designed and implemented, applicable to real-time control for continuous process automation system. The procedure implementing the control language is composed of three parts, editor, compiler, and executer. The editor generates the control algorithm file, which contains function block information in the text form, by menu-driven method on the color graphic screen. The compiler translates the contents of the control algorithm file to machine codes and their related data. Then, the executer generates a task that makes the machine codes executed at every sampling period in the target processor. The validity of the concept in its design and implementaion is assured by on-line simulation in the multi-function controller designed for continuous process automation.

  • PDF

Turbulent Flow over Thin Rectangular Riblets

  • El-Samni O. A.;Yoon Hyun Sik;Chun Ho Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1801-1810
    • /
    • 2005
  • The effect of longitudinal thin rectangular riblets aligned with the flow direction on turbulent channel flow has been investigated using direct numerical simulation. The thin riblets have been modeled using the immersed boundary method (IBM) where the velocities at only one set of vertical nodes at the riblets positions are enforced to be zeros. Different spacings, ranging between 11 and 43 wall units, have been simulated aiming at getting the optimum spacing corresponding to the maximum drag reduction while keeping the height/spacing ratio at 0.5. Reynolds number based on the friction velocity ${\mu}_\tau$ and the channel half depth $\delta$ is set to 150. The flow is driven by adjusted pressure gradient so that the mass flow rate is kept constant in all the simulations. This study shows similar trend of the drag ratio to that of the experiments at the different spacings. Also, this research provides an optimum spacing of around 17 wall units leading to maximum drag reduction as experimental data. Explanation of drag increasing/decreasing mechanism is highlighted.

충격파관을 이용한 세라믹 돔의 파괴 특성에 관한 연구 (A Study on Fracture Characteristic of Ceramic Dome Using Shock Tube)

  • 황권태;김재훈;이영신;박종호;권순국;송기혁;윤수진;이기천
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1274-1278
    • /
    • 2009
  • Fracture characteristics for plate and dome shapes of glass filled ceramics using shock tube were carried out. Glass filled ceramics have been considered as a promising candidate material for the dome port cover of air breathing engine. This part of the air breathing engine has an important role as separated membrane between combustion and external air, and needs the frangible characteristics that the particles of fractured glass filled ceramics should not affect the internal components of combustion. The objectives of this study are to evaluate the fracture pressures for various thicknesses and diameters of shock impact area. Also fracture phenomena of separated membrane using a shock tube compare with analytical method. The experimental apparatus consists of a driver, a driven section and a dump tank. The used material is glass filled ceramic made from Corning company. Specimens have the thickness of 3, 4.5 and 6mm. It is expected that the results obtained from this study can be used in the basic data for the dome port cover design of an air breathing engine.

인더스트리 4.0을 위한 고장예지 기술과 가스배관의 사용적합성 평가 (Prognostics for Industry 4.0 and Its Application to Fitness-for-Service Assessment of Corroded Gas Pipelines)

  • 김성준;최병학;김우식
    • 품질경영학회지
    • /
    • 제45권4호
    • /
    • pp.649-664
    • /
    • 2017
  • Purpose: This paper introduces the technology of prognostics for Industry 4.0 and presents its application procedure for fitness-for-service assessment of natural gas pipelines according to ISO 13374 framework. Methods: Combining data-driven approach with pipe failure models, we present a hybrid scheme for the gas pipeline prognostics. The probability of pipe failure is obtained by using the PCORRC burst pressure model and First Order Second Moment (FOSM) method. A fuzzy inference system is also employed to accommodate uncertainty due to corrosion growth and defect occurrence. Results: With a modified field dataset, the probability of failure on the pipeline is calculated. Then, its residual useful life (RUL) is predicted according to ISO 16708 standard. As a result, the fitness-for-service of the test pipeline is well-confirmed. Conclusion: The framework described in ISO 13374 is applicable to the RUL prediction and the fitness-for-service assessment for gas pipelines. Therefore, the technology of prognostics is helpful for safe and efficient management of gas pipelines in Industry 4.0.

STL 메쉬를 이용한 자유곡면의 레이저 측정경로 생성 연구 (STL mesh based laser scan planning system for complex freeform surfaces)

  • 손석배;김승만;이관행
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.595-598
    • /
    • 2002
  • Laser scanners are getting used more and more in reverse engineering and inspection. For CNC-driven laser scanners, it is important to automate the scanning operations to improve the accuracy of capture point data and to reduce scanning time in industry. However, there are few research works on laser scan planning system. In addition, it is difficult to directly analyze multi-patched freeform models. In this paper, we propose an STL (Stereolithography) mesh based laser scan planning system for complex freeform surfaces. The scan planning system consists of three steps and it is assumed that the CAD model of the part exists. Firstly, the surface model is approximated into STL meshes. From the mesh model, normal vector of each node point is estimated. Second, scan directions and regions are determined through the region growing method. Also, scan paths are generated by calculating the minimum-bounding rectangle of points that can be scanned in each scan direction. Finally, the generated scan directions and paths are validated by checking optical constraints and the collision between the laser probe and the part to be scanned.

  • PDF

QuLa: Queue and Latency-Aware Service Selection and Routing in Service-Centric Networking

  • Smet, Piet;Simoens, Pieter;Dhoedt, Bart
    • Journal of Communications and Networks
    • /
    • 제17권3호
    • /
    • pp.306-320
    • /
    • 2015
  • Due to an explosive growth in services running in different datacenters, there is need for service selection and routing to deliver user requests to the best service instance. In current solutions, it is generally the client that must first select a datacenter to forward the request to before an internal load-balancer of the selected datacenter can select the optimal instance. An optimal selection requires knowledge of both network and server characteristics, making clients less suitable to make this decision. Information-Centric Networking (ICN) research solved a similar selection problem for static data retrieval by integrating content delivery as a native network feature. We address the selection problem for services by extending the ICN-principles for services. In this paper we present Queue and Latency, a network-driven service selection algorithm which maps user demand to service instances, taking into account both network and server metrics. To reduce the size of service router forwarding tables, we present a statistical method to approximate an optimal load distribution with minimized router state required. Simulation results show that our statistical routing approach approximates the average system response time of source-based routing with minimized state in forwarding tables.