• Title/Summary/Keyword: Data analysis & prediction

Search Result 4,272, Processing Time 0.038 seconds

Analysis of urine β2-microglobulin in pediatric renal disease (소아 신장질환에서 요 β2-microglobulin검사의 분석)

  • Kim, Dong Woon;Lim, In Seok
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.4
    • /
    • pp.369-375
    • /
    • 2007
  • Purpose : There have been numerous researches on urine ${\beta}_2$-microglobulin (${\beta}_2$-M) concerned with primary nephrotic syndrome and other glomerular diseases, but not much has been done in relation to pediatric age groups. Thus, our hospital decided to study the relations between the analysis of the test results we have conducted on pediatric patients and renal functions. Methods : Retrospective data analysis was done to 102 patients of ages 0 to 4 with renal diseases with symptoms such as hematuria, edema, and proteinuria who were admitted to Chung-Ang Yongsan Hospital and who participated in 24-hour urine and urine ${\beta}_2$-M excretion test between January of 2003 and January of 2006. Each disease was differentiated as independent variables, and the statistical difference of the results of urine ${\beta}_2$-M excretion of several groups of renal diseases was analyzed with student T-test by using test results as dependent variables. Results : Levels of urine ${\beta}_2$-M excretion of the 102 patients were as follows : 52 had primary nephrotic syndrome [MCNS (n=45, $72{\pm}45{\mu}g/g$ creatinine, ${\mu}g/g-Cr$), MPGN (n=3, $154{\pm}415{\mu}g/g-Cr$), FSGS (n=4, $188{\pm}46{\mu}g/-Cr$], six had APSGN ($93{\pm}404{\mu}g/g-Cr$), seven had IgA nephropathy ($3,414{\pm}106{\mu}g/g-Cr$), 9 had APN ($742{\pm}160{\mu}g/g-Cr$), 16 had cystitis ($179{\pm}168{\mu}g/g-Cr$), and 12 had HSP nephritis ($109{\pm}898{\mu}g/g-Cr$). IgA nephropathy (P<0.05) and APN (P<0.05) were significantly higher than in other renal diseases. Among primary nephrotic syndrome, FSGS with higher results of ${\beta}_2$-microglobulin test had longer treatment period (P<0.01) when compared to the lower groups, but no significant differences in Ccr, BUN, or Cr were observed. Conclusion : IgA nephropathy and APN groups showed significantly higher level of ${\beta}_2$-M excretion value than other groups. Although ${\beta}_2$-microglobulin value is not appropriate as an indicator of general renal function and pathology, it seems to be sufficient in the differential diagnosis of the UTI and in the prediction of the treat-ment period of nephrotic syndrome patients.

Analysis of Sleep Questionnaires of Patients who Performed Overnight Polysomnography at the University Hospital (한 대학병원에서 철야 수면다원검사를 시행한 환자들의 수면설문조사 결과 분석)

  • Kang, Ji Ho;Lee, Sang Haak;Kwon, Soon Seog;Kim, Young Kyoon;Kim, Kwan Hyoung;Song, Jeong Sup;Park, Sung Hak;Moon, Hwa Sik;Park, Yong Moon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.1
    • /
    • pp.76-82
    • /
    • 2006
  • Background : The objective of this study was to understand sleep-related problems, and to determine whether the sleep questionnaires is a clinically useful method in patients who need polysomnography. Methods : Subjects were patients who performed polysomnography and who asked to answer a sleep questionnaires at the Sleep Disorders Clinic of St. Paul's Hospital, Catholic University of Korea. Baseline characteristics, past medical illness, behaviors during sleep-wake cycle, snoring, sleep-disordered breathing and symptoms of daytime sleepiness were analyzed to compare with data of polysomnography. Results : The study population included 1081 patients(849 men, 232 female), and their mean age was $44.2{\pm}12.8years$. Among these patients, 38.9% had an apnea-hypopnea index(AHI)<5, 27.9% had $5{\leq}AHI<20$, 13.2% had $20{\leq}AHI<40$, and 20.0% had $40{\leq}AHI$. The main problems for visiting our clinic were snoring(91.7%), sleep apnea(74.5%), excessive daytime sleepiness(8.0%), insomnia(4.3%), bruxism(1.1%) and attention deficit(0.5%). The mean value of frequency of interruptions of sleep was 1.6 and the most common reason was urination(46.3%). Epworth Sleepiness Scale(ESS) had a weak correlation with AHI(r=0.209, p<0.01). When we performed analysis of sleep questionnaires, there were significant differences in the mean values of AHI according to the severity of symptoms including snoring, daytime sleepiness, taking a nap and arousal state after wake(p<0.05). Conclusion : On the basis of statistical analysis of sleep questionnaires, the severity of subjective symptoms such as ESS, snoring, daytime sleepiness and arousal state after wake correlated with the AHI significantly. Therefore the sleep questionnaires can be useful instruments for prediction of the severity of sleep disorder, especially sleep-disordered breathing.

Analyzing the Characteristics of Atmospheric Stability from Radiosonde Observations in the Southern Coastal Region of the Korean Peninsula during the Summer of 2019 (라디오존데 고층관측자료를 활용한 한반도 남해안 지역의 2019년도 여름철 대기 안정도 특성 분석)

  • Shin, Seungsook;Hwang, Sung-Eun;Lee, Young-Tae;Kim, Byung-Taek;Kim, Ki-Hoon
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.496-503
    • /
    • 2021
  • By analyzing the characteristics of atmospheric stability in the southern coastal region of the Korean Peninsula in the summer of 2019, a quantitative threshold of atmospheric instability indices was derived for predicting rainfall events in the Korean Peninsula. For this analysis, we used data from all of the 243 radiosonde intensive observations recorded at the Boseong Standard Weather Observatory (BSWO) in the summer of 2019. To analyze the atmospheric stability of rain events and mesoscale atmospheric phenomena, convective available potential energy (CAPE) and storm relative helicity (SRH) were calculated and compared. In particular, SRH analysis was divided into four levels based on the depth of the atmosphere (0-1, 0-3, 0-6, and 0-10 km). The rain events were categorized into three cases: that of no rain, that of 12 h before the rain, and that of rain. The results showed that SRH was more suitable than CAPE for the prediction of the rainfall events in Boseong during the summer of 2019, and that the rainfall events occurred when the 0-6 km SRH was 150 m2 s-2 or more, which is the same standard as that for a possible weak tornado. In addition, the results of the atmospheric stability analysis during the Changma, which is the rainy period in the Korean Peninsula during the summer and typhoon seasons, showed that the 0-6 km SRH was larger than the mean value of the 0-10 km SRH, whereas SRH generally increased as the depth of the atmosphere increased. Therefore, it can be said that the 0-6 km SRH was more effective in determining the rainfall events caused by typhoons in Boseong in the summer of 2019.

A Study on Risk Parity Asset Allocation Model with XGBoos (XGBoost를 활용한 리스크패리티 자산배분 모형에 관한 연구)

  • Kim, Younghoon;Choi, HeungSik;Kim, SunWoong
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.135-149
    • /
    • 2020
  • Artificial intelligences are changing world. Financial market is also not an exception. Robo-Advisor is actively being developed, making up the weakness of traditional asset allocation methods and replacing the parts that are difficult for the traditional methods. It makes automated investment decisions with artificial intelligence algorithms and is used with various asset allocation models such as mean-variance model, Black-Litterman model and risk parity model. Risk parity model is a typical risk-based asset allocation model which is focused on the volatility of assets. It avoids investment risk structurally. So it has stability in the management of large size fund and it has been widely used in financial field. XGBoost model is a parallel tree-boosting method. It is an optimized gradient boosting model designed to be highly efficient and flexible. It not only makes billions of examples in limited memory environments but is also very fast to learn compared to traditional boosting methods. It is frequently used in various fields of data analysis and has a lot of advantages. So in this study, we propose a new asset allocation model that combines risk parity model and XGBoost machine learning model. This model uses XGBoost to predict the risk of assets and applies the predictive risk to the process of covariance estimation. There are estimated errors between the estimation period and the actual investment period because the optimized asset allocation model estimates the proportion of investments based on historical data. these estimated errors adversely affect the optimized portfolio performance. This study aims to improve the stability and portfolio performance of the model by predicting the volatility of the next investment period and reducing estimated errors of optimized asset allocation model. As a result, it narrows the gap between theory and practice and proposes a more advanced asset allocation model. In this study, we used the Korean stock market price data for a total of 17 years from 2003 to 2019 for the empirical test of the suggested model. The data sets are specifically composed of energy, finance, IT, industrial, material, telecommunication, utility, consumer, health care and staple sectors. We accumulated the value of prediction using moving-window method by 1,000 in-sample and 20 out-of-sample, so we produced a total of 154 rebalancing back-testing results. We analyzed portfolio performance in terms of cumulative rate of return and got a lot of sample data because of long period results. Comparing with traditional risk parity model, this experiment recorded improvements in both cumulative yield and reduction of estimated errors. The total cumulative return is 45.748%, about 5% higher than that of risk parity model and also the estimated errors are reduced in 9 out of 10 industry sectors. The reduction of estimated errors increases stability of the model and makes it easy to apply in practical investment. The results of the experiment showed improvement of portfolio performance by reducing the estimated errors of the optimized asset allocation model. Many financial models and asset allocation models are limited in practical investment because of the most fundamental question of whether the past characteristics of assets will continue into the future in the changing financial market. However, this study not only takes advantage of traditional asset allocation models, but also supplements the limitations of traditional methods and increases stability by predicting the risks of assets with the latest algorithm. There are various studies on parametric estimation methods to reduce the estimated errors in the portfolio optimization. We also suggested a new method to reduce estimated errors in optimized asset allocation model using machine learning. So this study is meaningful in that it proposes an advanced artificial intelligence asset allocation model for the fast-developing financial markets.

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.

A Statistical model to Predict soil Temperature by Combining the Yearly Oscillation Fourier Expansion and Meteorological Factors (연주기(年週期) Fourier 함수(函數)와 기상요소(氣象要素)에 의(依)한 지온예측(地溫豫測) 통계(統計) 모형(模型))

  • Jung, Yeong-Sang;Lee, Byun-Woo;Kim, Byung-Chang;Lee, Yang-Soo;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.2
    • /
    • pp.87-93
    • /
    • 1990
  • A statistical model to predict soil temperature from the ambient meteorological factors including mean, maximum and minimum air temperatures, precipitation, wind speed and snow depth combined with Fourier time series expansion was developed with the data measured at the Suwon Meteorolical Service from 1979 to 1988. The stepwise elimination technique was used for statistical analysis. For the yearly oscillation model for soil temperature with 8 terms of Fourier expansion, the mean square error was decreased with soil depth showing 2.30 for the surface temperature, and 1.34-0.42 for 5 to 500-cm soil temperatures. The $r^2$ ranged from 0.913 to 0.988. The number of lag days of air temperature by remainder analysis was 0 day for the soil surface temperature, -1 day for 5 to 30-cm soil temperature, and -2 days for 50-cm soil temperature. The number of lag days for precipitaion, snow depth and wind speed was -1 day for the 0 to 10-cm soil temperatures, and -2 to -3 days for the 30 to 50-cm soil teperatures. For the statistical soil temperature prediction model combined with the yearly oscillation terms and meteorological factors as remainder terms considering the lag days obtained above, the mean square error was 1.64 for the soil surfac temperature, and ranged 1.34-0.42 for 5 to 500cm soil temperatures. The model test with 1978 data independent to model development resulted in good agreement with $r^2$ ranged 0.976 to 0.996. The magnitudes of coeffcicients implied that the soil depth where daily meteorological variables night affect soil temperature was 30 to 50 cm. In the models, solar radiation was not included as a independent variable ; however, in a seperated analysis on relationship between the difference(${\Delta}Tmxs$) of the maximum soil temperature and the maximum air temperature and solar radiation(Rs ; $J\;m^{-2}$) under a corn canopy showed linear relationship as $${\Delta}Tmxs=0.902+1.924{\times}10^{-3}$$ Rs for leaf area index lower than 2 $${\Delta}Tmxs=0.274+8.881{\times}10^{-4}$$ Rs for leaf area index higher than 2.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

The Study on the Confidence Building for Evaluation Methods of a Fracture System and Its Hydraulic Conductivity (단열체계 및 수리전도도의 해석신뢰도 향상을 위한 평가방법 연구)

  • Cho Sung-Il;Kim Chun-Soo;Bae Dae-Seok;Kim Kyung-Su;Song Moo-Young
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.213-227
    • /
    • 2005
  • This study aims to assess the problems with investigation method and to suggest the complementary solutions by comparing the predicted data from surface investigation with the outcome data from underground cavern. In the study area, one(NE-1) of 6 fracture zones predicted during the surface investigation was only confirmed in underground caverns. Therefore, it is necessary to improve the confidence level for prediction. In this study, the fracture classification criteria was quantitatively suggested on the basis of the BHTV images of NE-1 fracture zone. The major orientation of background fractures in rock mass was changed at the depth of the storage cavern, the length and intensity were decreased. These characteristics result in the deviation of predieted predicted fracture properties and generate the investigation bias depending on the bore hole directions and investigated scales. The evaluation of hydraulic connectivity in the surface investigation stage needs to be analyze by the groundwater pressures and hydrochemical properties from the monitoring bore hole(s) equipped with a double completion or multi-packer system during the test bore hole is pumping or injecting. The hydraulic conductivities in geometric mean measured in the underground caverns are 2-3 times lower than those from the surface and furthermore the horizontal hydraulic conductivity in geometric mean is six times lower than the vertical one. To improve confidence level of the hydraulic conductivity, the orientation of test hole should be considered during the analysis of the hydraulic conductivity and the methodology of hydro-testing and interpretation should be based on the characteristics of rock mass and investigation purposes.

정지궤도 통신해양기상위성의 기상분야 요구사항에 관하여

  • Ahn, Myung-Hwan;Kim, Kum-Lan
    • Atmosphere
    • /
    • v.12 no.4
    • /
    • pp.20-42
    • /
    • 2002
  • Based on the "Mid to Long Term Plan for Space Development", a project to launch COMeS (Communication, Oceanography, and Meteorological Satellite) into the geostationary orbit is undergoing. Accordingly, KMA (Korea Meteorological Administration) has defined the meteorological missions and prepared the user requirements to fulfill the missions. To make a realistic user requirements, we prepared a first draft based on the ideal meteorological products derivable from a geostationary platform and sent the RFI (request for information) to the sensor manufacturers. Based on the responses to the RFI and other considerations, we revised the user requirement to be a realistic plan for the 2008 launch of the satellite. This manuscript introduces the revised user requirements briefly. The major mission defined in the revised user requirement is the augmentation of the detection and prediction ability of the severe weather phenomena, especially around the Korean Peninsula. The required payload is an enhanced Imager, which includes the major observation channels of the current geostationary sounder. To derive the required meteorological products from the Imager, at least 12 channels are required with the optimum of 16 channels. The minimum 12 channels are 6 wavelength bands used for current geostationary satellite, and additional channels in two visible bands, a near infrared band, two water vapor bands and one ozone absorption band. From these enhanced channel observation, we are going to derive and utilize the information of water vapor, stability index, wind field, and analysis of special weather phenomena such as the yellow sand event in addition to the standard derived products from the current geostationary Imager data. For a better temporal coverage, the Imager is required to acquire the full disk data within 15 minutes and to have the rapid scan mode for the limited area coverage. The required thresholds of spatial resolutions are 1 km and 2 km for visible and infrared channels, respectively, while the target resolutions are 0.5 km and 1 km.

Prediction of Late Rectal Complication Following High-dose-rate Intracavitary Brachytherapy in Cancer of the Uterine Cervix (자궁경부암 환자의 고선량률 강내치료 시행 시 직장합병증의 예측)

  • Lee, Jeung-Eun;Huh, Seung-Jae;Park, Won;Lim, Do-Hoon;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.21 no.4
    • /
    • pp.276-282
    • /
    • 2003
  • Purpose: Although high-dose-rate intracavitary radiotherapy (HDR ICR) has been used in the treatment of cervical cancer, the potential for increased risk of late complication, most commonly in the rectum, is a major concern. We have previously reported on 136 patients treated with HDR brachytherapy between 1995 and 1999. The purpose of this study is to upgrade the previous data and confirm the correlation between late rectal complication and rectal dose in cervix cancer patients treated with HDR ICR. Materials and Methods: A retrospective analysis was peformed for 222 patients with cevix cancer who were treated for curative intent with external beam radiotherapy (EBRT) and HDR ICR from July 1995 to December 2001. The median dose of EBRT was 50.4 (30.6$\~$56.4) Gy with a daily fraction size 1.8 Gy. A total of six fractions of HDR ICR were given twice weekly with fraction size of 4 (3$\~$5.5) Gy to A point by Iridium-192 source. The rectal dose was calculated at the rectal reference point using the barium contrast criteria. in vivo measurement of the rectal dose was peformed with thermoluminescent dosimeter (TLD) during HDR ICR. The median follow-up period was 39 months, ranging from 6 to 90 months. Results: Twenty-one patients (9.5$\%$) experienced late rectal bleeding, from 3 to 44 months (median, 13 months) after the completion of RT. The calculated rectal doses were not different between the patients with rectal bleeding and those without, but the measured rectal doses were higher in the complicated patients. The differences of the measured ICR rectal fractional dose, ICR total rectal dose, and total rectal biologically equivalent dose (BED) were statistically significant. When the measured ICR total rectal dose was beyond 16 Gy, when the ratio of the measured rectal dose to A point dose was beyond 70$\%$, or when the measured rectal BED was over 110 Gy$_{3}$, a high possibility of late rectal complication was found. Conclusion: Late rectal complication was closely correlated with measured rectal dose by in vivo dosimetry using TLD during HDR ICR. If data from in vivo dosimetry shows any possibility of rectal bleeding, efforts should be made to reduce the rectal dose.