• Title/Summary/Keyword: Data Transform

Search Result 2,225, Processing Time 0.03 seconds

A Fast Parameter Estimation of Time Series Data Using Discrete Fourier Transform (이산푸리에변환과 시계열데이터의 고속 파라미터 추정)

  • Shim, Kwan-Shik;Nam, Hae-Kon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.7
    • /
    • pp.265-272
    • /
    • 2006
  • This paper describes a method of parameter estimation of time series data using discrete Fourier transform(DFT). DFT have been mainly used to precisely and rapidly obtain the frequency of a signal. In a dynamic system, a real part of a mode used to learn damping characteristics is a more important factor than the frequency of the mode. The parameter estimation method of this paper can directly estimate modes and parameters, indicating the characteristics of a dynamic system, on the basis of the Fourier transform of the time series data. Real part of a mode estimates by subtracting a frequency of the Fourier spectrum corresponding to 0.707 of a magnitude of the peak spectrum from a peak frequency, or subtracting a frequency of the power spectrum corresponding to 0.5 of the peak power spectrum from a peak frequency, or comparing the Fourier(power) spectrum ratio. Also, the residue and phase of time signal calculate by simple equation with the real part of the mode and the power spectrum that have been calculated. Accordingly, the proposed algorithm is advantageous in that it can estimate parameters of the system through a single DFT without repeatedly calculating a DFT, thus shortening the time required to estimate the parameters.

Wavelet based multi-step filtering method for bridge health monitoring using GPS and accelerometer

  • Yi, Ting-Hua;Li, Hong-Nan;Gu, Ming
    • Smart Structures and Systems
    • /
    • v.11 no.4
    • /
    • pp.331-348
    • /
    • 2013
  • Effective monitoring, reliable data analysis, and rational data interpretations are challenges for engineers who are specialized in bridge health monitoring. This paper demonstrates how to use the Global Positioning System (GPS) and accelerometer data to accurately extract static and quasi-static displacements of the bridge induced by ambient effects. To eliminate the disadvantages of the two separate units, based on the characteristics of the bias terms derived from the GPS and accelerometer respectively, a wavelet based multi-step filtering method by combining the merits of the continuous wavelet transform (CWT) with the discrete stationary wavelet transform (SWT) is proposed so as to address the GPS deformation monitoring application more efficiently. The field measurements are carried out on an existing suspension bridge under the normal operation without any traffic interference. Experimental results showed that the frequencies and absolute displacements of the bridge can be accurate extracted by the proposed method. The integration of GPS and accelerometer can be used as a reliable tool to characterize the dynamic behavior of large structures such as suspension bridges undergoing environmental loads.

Classification of Textured Images Based on Discrete Wavelet Transform and Information Fusion

  • Anibou, Chaimae;Saidi, Mohammed Nabil;Aboutajdine, Driss
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.421-437
    • /
    • 2015
  • This paper aims to present a supervised classification algorithm based on data fusion for the segmentation of the textured images. The feature extraction method we used is based on discrete wavelet transform (DWT). In the segmentation stage, the estimated feature vector of each pixel is sent to the support vector machine (SVM) classifier for initial labeling. To obtain a more accurate segmentation result, two strategies based on information fusion were used. We first integrated decision-level fusion strategies by combining decisions made by the SVM classifier within a sliding window. In the second strategy, the fuzzy set theory and rules based on probability theory were used to combine the scores obtained by SVM over a sliding window. Finally, the performance of the proposed segmentation algorithm was demonstrated on a variety of synthetic and real images and showed that the proposed data fusion method improved the classification accuracy compared to applying a SVM classifier. The results revealed that the overall accuracies of SVM classification of textured images is 88%, while our fusion methodology obtained an accuracy of up to 96%, depending on the size of the data base.

A Study on High Impedance Fault Detection using Fast Wavelet Transforms (고속 웨이브렛을 이용한 고저항 고장 검출에 관한 연구)

  • Hong, D.S.;Shim, J.C.;Jong, B.H.;Yun, S.Y.;Bae, Y.C.;Ryu, C.W.;Yim, H.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2184-2186
    • /
    • 2001
  • The research presented in this paper focuses on a method for the detection of High Impedance Fault(HIF). The method will use the fast wavelet transform and neural network system. HIF on the multi-grounded three-phase four-wires primary distribution power system cannot be detected effectively by existing over current sensing devices. These paper describes the application of fast wavelet transform to the various HIF data. These data were measured in actual 22.9kV distribution system. Wavelet transform analysis gives the frequency and time-scale information. The neural network system as a fault detector was trained to discriminate HIF from the normal status by a gradient descent method. The proposed method performed very well by proving the right state when it was applied staged fault data and normal load mimics HIF, such as arc-welder.

  • PDF

A Study on the Forming Failure Inspection of Small and Multi Pipes (소형 다품종 파이프의 실시간 성형불량 검사 시스템에 관한 연구)

  • 김형석;이회명;이병룡;양순용;안경관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.61-68
    • /
    • 2004
  • Recently, there has been an increasing demand for computer-vision based inspection and/or measurement system as a part of factory automation equipment. Existing manual inspection method can inspect only specific samples and has low measuring accuracy as well as it increases working time. Thus, in order to improve the objectivity and reproducibility, computer-aided analysis method is needed. In this paper, front and side profile inspection and/or data transfer system are developed using computer-vision during the inspection process on three kinds of pipes coming from a forming line. Straight line and circle are extracted from profiles obtained from vision using Laplace operator. To reduce inspection time, Hough Transform is used with clustering method for straight line detection and the center points and diameters of inner and outer circle are found to determine eccentricity and whether good or bad. Also, an inspection system has been built that each pipe's data and images of good/bad test are stored as files and transferred to the server so that the center can manage them.

Analyzing performance of time series classification using STFT and time series imaging algorithms

  • Sung-Kyu Hong;Sang-Chul Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.1-11
    • /
    • 2023
  • In this paper, instead of using recurrent neural network, we compare a classification performance of time series imaging algorithms using convolution neural network. There are traditional algorithms that imaging time series data (e.g. GAF(Gramian Angular Field), MTF(Markov Transition Field), RP(Recurrence Plot)) in TSC(Time Series Classification) community. Furthermore, we compare STFT(Short Time Fourier Transform) algorithm that can acquire spectrogram that visualize feature of voice data. We experiment CNN's performance by adjusting hyper parameters of imaging algorithms. When evaluate with GunPoint dataset in UCR archive, STFT(Short-Time Fourier transform) has higher accuracy than other algorithms. GAF has 98~99% accuracy either, but there is a disadvantage that size of image is massive.

Design of a Block Data Flow Architecture for 2-D DWT/IDWT (2차원 DWT/IDWT의 블록 데이터 플로우 구조 설계)

  • 정갑천;강준우
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1157-1160
    • /
    • 1998
  • This paper describes the design of a block data flow architecture(BDFA) which implements 2-D discrete wavelet transform(DWT)/inverse discrete wavelet transform(IDWT) for real time image processing applications. The BDFA uses 2-D product separable filters for DWT/IDWT. It consists of an input module, a processor array, and an output module. It use both data partitioning and algorithm partitioning to achieve high efficiency and high throughput. The 2-D DWT/IDWT algorithm for 256$\times$256 lenna image has been simulated using IDL(Interactive Data Language). The 2-D array structured BDFA for the 2-D filter has been modeled and simulated using VHDL.

  • PDF

Vegetation Classification from Time Series NOAA/AVHRR Data

  • Yasuoka, Yoshifumi;Nakagawa, Ai;Kokubu, Keiko;Pahari, Krishna;Sugita, Mikio;Tamura, Masayuki
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.429-432
    • /
    • 1999
  • Vegetation cover classification is examined based on a time series NOAA/AVHRR data. Time series data analysis methods including Fourier transform, Auto-Regressive (AR) model and temporal signature similarity matching are developed to extract phenological features of vegetation from a time series NDVI data from NOAA/AVHRR and to classify vegetation types. In the Fourier transform method, typical three spectral components expressing the phenological features of vegetation are selected for classification, and also in the AR model method AR coefficients are selected. In the temporal signature similarity matching method a new index evaluating the similarity of temporal pattern of the NDVI is introduced for classification.

  • PDF

A Robust Watermarking Technique Using Affine Transform and Cross-Reference Points (어파인 변형과 교차참조점을 이용한 강인한 워터마킹 기법)

  • Lee, Hang-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.615-622
    • /
    • 2007
  • In general, Harris detector is commonly used for finding salient points in watermarking systems using feature points. Harris detector is a kind of combined comer and edge detector which is based on neighboring image data distribution, therefore it has some limitation to find accurate salient points after watermark embedding or any kinds of digital attacks. In this paper, we have used cross reference points which use not data distribution but geometrical structure of a normalized image in order to avoid pointing error caused by the distortion of image data. After normalization, we find cross reference points and take inverse normalization of these points. Next, we construct a group of triangles using tessellation with inversely normalized cross reference points. The watermarks are affine transformed and transformed-watermarks are embedded into not normalized image but original one. Only locations of watermarks are determined on the normalized image. Therefore, we can reduce data loss of watermark which is caused by inverse normalization. As a result, we can detect watermarks with high correlation after several digital attacks.

Wavelet-based damage detection method for a beam-type structure carrying moving mass

  • Gokdag, Hakan
    • Structural Engineering and Mechanics
    • /
    • v.38 no.1
    • /
    • pp.81-97
    • /
    • 2011
  • In this research, the wavelet transform is used to analyze time response of a cracked beam carrying moving mass for damage detection. In this respect, a new damage detection method based on the combined use of continuous and discrete wavelet transforms is proposed. It is shown that this method is more capable in making damage signature evident than the traditional two approaches based on direct investigation of the wavelet coefficients of structural response. By the proposed method, it is concluded that strain data outperforms displacement data at the same point in revealing damage signature. In addition, influence of moving mass-induced terms such as gravitational, Coriolis, centrifuge forces, and pure inertia force along the deflection direction to damage detection is investigated on a sample case. From this analysis it is concluded that centrifuge force has the most influence on making both displacement and strain data damage-sensitive. The Coriolis effect is the second to improve the damage-sensitivity of data. However, its impact is considerably less than the former. The rest, on the other hand, are observed to be insufficient alone.