• Title/Summary/Keyword: Data Transfer Node

Search Result 181, Processing Time 0.022 seconds

Estimating Station Transfer Trips of Seoul Metropolitan Urban Railway Stations -Using Transportation Card Data - (수도권 도시철도 역사환승량 추정방안 -교통카드자료를 활용하여 -)

  • Lee, Mee-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.693-701
    • /
    • 2018
  • Transfer types at the Seoul Metropolitan Urban Railway Stations can be classified into transfer between lines and station transfer. Station transfer is defined as occurring when either 1) the operating line that operates the tag-in card-reader and that operating the first train boarded by the passenger are different; or 2) the line operating the final alighted train and that operating the tag-out card-reader are different. In existing research, transportation card data is used to estimate transfer volume between lines, but excludes station transfer volume which leads to underestimation of volume through transfer passages. This research applies transportation card data to a method for station transfer volume estimation. To achieve this, the passenger path choice model is made appropriate for station transfer estimation using a modified big-node based network construction and data structure method. Case study analysis is performed using about 8 million daily data inputs from the metropolitan urban railway.

A multi-radio sink node designed for wireless SHM applications

  • Yuan, Shenfang;Wang, Zilong;Qiu, Lei;Wang, Yang;Liu, Menglong
    • Smart Structures and Systems
    • /
    • v.11 no.3
    • /
    • pp.261-282
    • /
    • 2013
  • Structural health monitoring (SHM) is an application area of Wireless Sensor Networks (WSNs) which usually needs high data communication rate to transfer a large amount of monitoring data. Traditional sink node can only process data from one communication channel at the same time because of the single radio chip structure. The sink node constitutes a bottleneck for constructing a high data rate SHM application giving rise to a long data transfer time. Multi-channel communication has been proved to be an efficient method to improve the data throughput by enabling parallel transmissions among different frequency channels. This paper proposes an 8-radio integrated sink node design method based on Field Programmable Gate Array (FPGA) and the time synchronization mechanism for the multi-channel network based on the proposed sink node. Three experiments have been performed to evaluate the data transfer ability of the developed multi-radio sink node and the performance of the time synchronization mechanism. A high data throughput of 1020Kbps of the developed sink node has been proved by experiments using IEEE.805.15.4.

Performance Enhancement Method Through Science DMZ Data Transfer Node Tuning Parameters (Science DMZ 데이터 전송 노드 튜닝 요소를 통한 성능 향상 방안)

  • Park, Jong Seon;Park, Jin Hyung;Kim, Seung Hae;Noh, Min Ki
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.2
    • /
    • pp.33-40
    • /
    • 2018
  • In an environment with a large network bandwidth, maximizing bandwidth utilization is an important issue to increase transmission efficiency. End-to-end transfer efficiency is significantly influenced by factors such as network, data transfer nodes, and intranet network security policies. Science DMZ is an innovative network architecture that maximizes transfer performance through optimal solution of these complex components. Among these, the data transfer node is a key factor that greatly affects the transfer performance depending on storage, network interface, operating system, and transfer application tool. However, tuning parameters constituting a data transfer node must be performed to provide high transfer efficiency. In this paper, we propose a method to enhance performance through tuning parameters of 100Gbps data transfer node. With experiment result, we confirmed that the transmission efficiency can be improved greatly in 100Gbps network environment through the tuning of Jumbo frame and CPU governor. The network performance test through Iperf showed improvement of 300% compared to the default state and NVMe SSD showed 140% performance improvement compared to hard disk.

Processing-Node Status-based Message Scattering and Gathering for Multi-processor Systems on Chip

  • Park, Jongsu
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.279-284
    • /
    • 2019
  • This paper presents processing-node status-based message scattering and gathering algorithms for multi-processor systems on chip to reduce the communication time between processors. In the message-scattering part of the message-passing interface (MPI) scatter function, data transmissions are ordered according to the proposed linear algorithm, based on the processor status. The MPI hardware unit in the root processing node checks whether each processing node's status is 'free' or 'busy' when an MPI scatter message is received. Then, it first transfers the data to a 'free' processing node, thereby reducing the scattering completion time. In the message-gathering part of the MPI gather function, the data transmissions are ordered according to the proposed linear algorithm, and the gathering is performed. The root node receives data from the processing node that wants to transfer first, and reduces the completion time during the gathering. The experimental results show that the performance of the proposed algorithm increases at a greater rate as the number of processing nodes increases.

Research on Science DMZ scalability for the high performance research data networking (연구데이터의 고성능 네트워킹을 위한 Science DMZ 확장성 연구)

  • Lee, Chankyun;Jang, Minseok;Noh, Minki;Seok, Woojin
    • KNOM Review
    • /
    • v.22 no.2
    • /
    • pp.22-28
    • /
    • 2019
  • A Science DeMilitarized Zone (DMZ) is an optimized network technology tailored to research data nature. The Science DMZ guarantees end-to-end network performance by forming a closed research network without redundant networking and security devices for the authorized researchers. Data Transfer Node (DTN) is an essential component for the high performance and security of the Science DMZ, since only transfer functions of research data are allowed to the DTN without any security- and performance-threatening functions such as commercial internet service. Current Science DMZ requires per-user DTN server installation which turns out a scalability limitation of the networks in terms of management overhead, entry barrier of the user, and networks-wise CAPEX. In order to relax the aforementioned scalability issues, this paper suggests a centralized DTN design where end users in a group can share the centralized DTN. We evaluate the effectiveness of the suggested sharable DTN design by comparing CAPEX against to that of current design with respect to the diverse network load and the state-of-the-art computing machine.

Deployment and Performance Analysis of Data Transfer Node Cluster for HPC Environment (HPC 환경을 위한 데이터 전송 노드 클러스터 구축 및 성능분석)

  • Hong, Wontaek;An, Dosik;Lee, Jaekook;Moon, Jeonghoon;Seok, Woojin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.9
    • /
    • pp.197-206
    • /
    • 2020
  • Collaborative research in science applications based on HPC service needs rapid transfers of massive data between research colleagues over wide area network. With regard to this requirement, researches on enhancing data transfer performance between major superfacilities in the U.S. have been conducted recently. In this paper, we deploy multiple data transfer nodes(DTNs) over high-speed science networks in order to move rapidly large amounts of data in the parallel filesystem of KISTI's Nurion supercomputer, and perform transfer experiments between endpoints with approximately 130ms round trip time. We have shown the results of transfer throughput in different size file sets and compared them. In addition, it has been confirmed that the DTN cluster with three nodes can provide about 1.8 and 2.7 times higher transfer throughput than a single node in two types of concurrency and parallelism settings.

Design and Implementation of Channel Allocation Module of Synchronous Area in MOST Network (MOST 네트워크의 동기영역 채널 할당 모듈 설계 및 구현)

  • Jang, Si-Woong;Kwak, Gil-Bong;Yu, Yoon-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1397-1402
    • /
    • 2010
  • While MOST is an in-vehicle network which transfers concurrently synchronous data, asynchronous data and control data, it provides high bandwidth synchronous section which can transfer video and audio without buffering. To transfer real time data using synchronous section, connections between source node and sink node, and channel allocation for connections are required. In this paper, we proposed synchronous data transfer method and channel allocation method by constructing MOST network after designing and implementing channel allocation module for using synchronous data section.

Development of Network remote Control System using Ethernet (Ethernet을 이용한 네트워크 원격 컨트롤 시스템 개발)

  • Kim, Yi-Cheal;Lee, Jea-Ho;Lee, Jong-Sung;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2140-2142
    • /
    • 2003
  • Recently, TCP/IP on Ethernet protocol is in use environment of LAN have developed a single chip by hardware. Therefore, the study about the single chip applies to the system control application like information electronic appliances, manufacturing automation machine has been made progress. This paper is the development of experimental Client node and Serve node that can transfer input-output data needed on Network Control System Client node is a sensor part of control system, that is, an analog signal is applicable to output data convert AD through LAN. Server node data sended in client convert DA, and then it is applicable to driver of Control System, so it achieves its part. In this study, is prove that using TCP/IP construct Network Control System.

  • PDF

Water Quality Forecasting of Chungju Lake Using Artificial Neural Network Algorithm (인공신경망 이론을 이용한 충주호의 수질예측)

  • 정효준;이소진;이홍근
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.201-207
    • /
    • 2002
  • This study was carried out to evaluate the artificial neural network algorithm for water quality forecasting in Chungju lake, north Chungcheong province. Multi-layer perceptron(MLP) was used to train artificial neural networks. MLP was composed of one input layer, two hidden layers and one output layer. Transfer functions of the hidden layer were sigmoid and linear function. The number of node in the hidden layer was decided by trial and error method. It showed that appropriate node number in the hidden layer is 10 for pH training, 15 for DO and BOD, respectively. Reliability index was used to verify for the forecasting power. Considering some outlying data, artificial neural network fitted well between actual water quality data and computed data by artificial neural networks.

Design and Implementation of an Electrocardiogram Measurement System Using Sensor Network (센서네트워크를 이용한 심전도 측정시스템의 설계 및 구현)

  • Kim, Jeong-Won
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.186-194
    • /
    • 2008
  • This paper has implemented a ubiquitous healthcare system that can measure and check the electrocardiogram of a human body in anytime and anywhere. The implemented prototype is composed of electrocardiogram measurement terminal, data gathering base node, and medical information server. The implemented node constructs a sensor network using the Zigbee protocol and the TinyOS is installed on each node. The data gathering base node is linux-based node that can transfer sensed medial data through wireless LAN. And, the medical information server stores the processed medical data and can promptly notify the urgent status to the connected medical team. Through experiment, we confirmed the possibility of ubiquitous healthcare system based on sensor network using the Zigbee.