A new GA-based methodology using information granules is suggested for the construction of fuzzy classifiers. The proposed scheme consists of three steps: selection of information granules, construction of the associated fuzzy sets, and tuning of the fuzzy rules. First, the genetic algorithm (GA) is applied to the development of the adequate information granules. The fuzzy sets are then constructed from the analysis of the developed information granules. An interpretable fuzzy classifier is designed by using the constructed fuzzy sets. Finally, the GA are utilized for tuning of the fuzzy rules, which can enhance the classification performance on the misclassified data (e.g., data with the strange pattern or on the boundaries of the classes). To show the effectiveness of the proposed method, an example, the classification of the Iris data, is provided.
The paper employs a feed forward neural network with back-propagation algorithm for modeling time dependent swell in clays containing carbonate in the presence of sulfuric acid. The oedometer swell percent is estimated at a nominal surcharge pressure of 6.25 kPa to develop 612 data sets for modeling. The input parameters used in the network include time, sulfuric acid concentration, carbonate percentage, and liquid limit. Among the total data sets, 280 (46%) were assigned to training, 175 (29%) for testing and the remaining 157 data sets (25%) were relegated to cross validation. The network was programmed to process this information and predict the percent swell at any time, knowing the variable involved. The study demonstrates that it is possible to develop a general BPNN model that can predict time dependent swell with relatively high accuracy with observed data ($R^2$=0.9986). The obtained results are also compared with generated non-linear regression model.
Transactions on Control, Automation and Systems Engineering
/
제3권3호
/
pp.196-202
/
2001
Quick evaluations of two in-plane orbit maneuvers using small sets of real-time GPS navigation solutions were performed for the KOMPSAT-1 spacecraft operation. Real-time GPS navigation solutions of the KOMPSAT-1 were collected during the Korean Ground Station(KGS) pass. Only a few sets of position and velocity data after completion of the thruster firing were used for the quick maneuver evaluations. The results were used for antenna pointing data predictions for the next station contact. Normal orbit maneuver evaluations using large sets of playback GPS navigation solutions were also performed and the result were compared with the quick evaluation results.
In this paper, we propose a method to classify the skeletal maturity with a small amount of hand wrist X-ray image using deep learning-based meta-learning. General deep-learning techniques require large amounts of data, but in many cases, these data sets are not available for practical application. Lack of learning data is usually solved through transfer learning using pre-trained models with large data sets. However, transfer learning performance may be degraded due to over fitting for unknown new task with small data, which results in poor generalization capability. In addition, medical images require high cost resources such as a professional manpower and mcuh time to obtain labeled data. Therefore, in this paper, we use meta-learning that can classify using only a small amount of new data by pre-trained models trained with various learning tasks. First, we train the meta-model by using a separate data set composed of various learning tasks. The network learns to classify the bone maturity using the bone maturity data composed of the radiographs of the wrist. Then, we compare the results of the classification using the conventional learning algorithm with the results of the meta learning by the same number of learning data sets.
Journal of Advanced Marine Engineering and Technology
/
제40권8호
/
pp.726-732
/
2016
Clustering analysis is widely used in data mining to classify data into categories on the basis of their similarity. Through the decades, many clustering techniques have been developed, including hierarchical and non-hierarchical algorithms. In gene profiling problems, because of the large number of genes and the complexity of biological networks, dimensionality reduction techniques are critical exploratory tools for clustering analysis of gene expression data. Recently, clustering analysis of applying dimensionality reduction techniques was also proposed. PCA (principal component analysis) is a popular methd of dimensionality reduction techniques for clustering problems. However, previous studies analyzed the performance of PCA for only full data sets. In this paper, to specifically and robustly evaluate the performance of PCA for clustering analysis, we exploit an improved FCBF (fast correlation-based filter) of feature selection methods for supervised clustering data sets, and employ two well-known clustering algorithms: k-means and k-medoids. Computational results from supervised data sets show that the performance of PCA is very poor for large-scale features.
이 연구는 인공신경망기법을 적용하여 적지적수를 판정할 수 있는 산림환경입지인자를 도출하고, 그들 인자 상호간의 관계를 분석하여 적지적수 판정방법을 제시하고자 수행되었다. 적지적수 선정을 위한 대상수종으로 5개의 주요 침엽수종(P. densiflora for. erecta, L. leptolepis, P. koraiensis, P. densiflora, P. thunbergil)을 선정하였다. 먼저 총 1,320개소의 표준지를 대상으로 각 수종별 지위지수가 높은 순으로 40개씩 추출하여 총 200개의 표준지를 선발하였다. 각각의 자료는 해당 표준지에 대한 13개 인자의 산림입지환경 정보를 보유하고 있다. 연구결과 인공신경망기법은 패턴분류에 의한 산림입지환경 조사 자료들의 전산정보처리에 매우 효과적인 것을 알 수 있었다. 이 기법을 적지적수 판정에 필요한 패턴의 유무 분석에 응용함으로써 적지적수 판정에 거의 영향을 미칠 수 없는 패턴을 소유하고 있거나, 불규칙한 양상의 패턴으로 인해 패턴분류 과정 자체를 교란할 수 있는 자료들을 선별하여 제거할 수 있었다. 그 외에 인공신경망기법은 입지인자 구성에 따라 적지적수 판정 적합도가 77.6%에서 91.8%까지 높게 나타남으로써 산림입지환경조사 자료를 토대로 하는 적지적수 판정에 매우 높은 잠재력을 보여주었다.
본 논문에서는 의료용 빅 데이터를 활용하여 비즈니스와 연계하여 새로운 서비스를 창출하기 위한 프레임 워크를 설계하였다. 단순한 데이터 분석 단계를 나타내는 것이 아니라 데이터의 활용 목적을 명확히 하고, 이에 대한 분석을 수행하여 그 속에서 가치를 추출하고 실제 사업이나 서비스를 운용할 때까지의 과정을 설계한다. 설계된 프레임워크는 기본 아키텍처, 사회 시스템 모델까지 커버할 수 있도록 하였다. 설계된 프레임 워크를 참조하여 사회 시스템에 적용될 수 있도록 디자인하였으며, 기본 데이터로는 의료용 빅 데이터를 중심으로 하였다. 의료용 기본 데이터를 적용한 프레임 워크 설계로 여러 의료용 사업 제휴 및 서비스 창출을 실현할 수 있을 것으로 기대하고 있다.
대한원격탐사학회 2008년도 International Symposium on Remote Sensing
/
pp.289-292
/
2008
Recently, several satellite data analyses projects and numerical weather prediction (NWP) reanalysis projects have produced the ocean surface Latent Heat Flux (LHF) data sets in the global coverage. Comparisons of these LHF data sets showed substantial discrepancies in the LHF values. Recently, the increase of LHF in during 1970s-1990s over the global ocean is shown by the LHF data that have been developed at the Objective Analyzed Air-Sea Fluxes (OAFlux) project. It is interesting to investigate the existence of the increase of LHF over a global ocean in the other LHF products. It is interesting to investigate the existence of the increase of LHF over a global ocean in the other LHF products. In this study, we assessed the consistencies and discrepancies of the inter-annual variability and decadal trend for the period 1988-2005 among six LHF products ((J-OFURO2, HOAPS3, IFREMER, NCEP1,2 and OAFlux) over the global ocean. As results, all LHF products showed a positive trend. In particular, the positive trend in satellite-based data analyses (J-OFURO2, HOAPS3, IFREMER) is larger than that in reanalysis products (NCEP1/2). Also, the consistencies and discrepancies are shown on the spatial patterns of the LHF trends across the six data sets. The positive trend of LHF is remarkable in the regions of western boundary currents such as the Kuroshio and the Gulf Stream in all LHF data sets. But, the discrepancies are shown on the spatial patterns of the LHF trends in tropics and subtropics. These discrepancies are primarily caused by the differences of the input meteorological state variables, particularly for the air specific humidity, used to calculate LHF.
데이터베이스시스템을 활용하여 데이터를 수집 처리하는 분야가 급속도로 확대됨에 따라 데이터세트에 대해서도 일반기록물과 같이 수집 평가 보존 활용해야 할 필요성이 증대되고 있다. 그럼에도 불구하고 국내 기록관리 분야에서의 데이터세트에 대한 관심은 매우 미흡한 수준이다. 이에 본고에서는 데이터세트를 기록물로 인식하고 체계적인 관리를 하기 위한 기본항목을 제시하고자 한다. 국제표준인 ISAD(G)를 준용하여 RAD, MAD와 데이터세트를 기록물로 인정하여 서비스를 제공하고 있는 NDAD의 기술요소를 세밀히 조사 분석하여, ISAD(G)의 기술영역을 기준으로 국내 데이터세트 기술에 필요한 각 기술영역과 영 역별 내 주요 기술요소안을 제시하였다.
Journal of the Korean Data and Information Science Society
/
제12권2호
/
pp.71-82
/
2001
There are several ways to test the equality of two survival distributions under a variety of situations. Tests for equality of two distributions with life-table model for univariate independent response times are reviewed and introduced. It is developed that the methodology to test it for correlated response times where treatments are applied to different independent sets of cohorts. Data, which can be separated into two independent sets, from an angioplasty study where more than one procedure is performed on some patients are used to illustrate this methodology.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.