Purpose: This study was to test a structural model of spirituality and the quality of life of stroke survivors' caregivers in order to provide guidelines for the development of intervention and strategies to improve their quality of life. Methods: Data were collected from 133 family caregivers of stroke patients who were hospitalized in C university hospital located in Seoul. Data collection using survey questionnaires was done from May, 2013 to February, 2014. Results: Fitness of the hypothetical model was appropriate. Physical component of quality of life of family caregivers is directly affected by two variables (51.5%), burden and depression. Mental component of quality of life of family caregivers is directly affected by three variables (77.6%), depression, burden, and functional dependence of patients. Depression as well as burden were directly affected by spirituality and functional dependence of patients respectively. Thus, spirituality directly affected depression and burden and indirectly affected the quality of life of family caregivers. Conclusion: Therefore, spiritual intervention to improve the stroke caregivers' quality of life might be necessary to support and strengthen their spirituality as a mediating variable that can contribute to decreasing their depression and burden.
Journal of Korean Institute of Industrial Engineers
/
v.39
no.4
/
pp.271-277
/
2013
In spite of the emphasis on quality control in auto-industry, most of subcontract enterprises still lack a systematic in-process quality monitoring system for predicting the product/part quality for their customers. While their manufacturing processes have been getting automated and computer-controlled ever, there still exist many uncertain parameters and the process controls still rely on empirical works by a few skilled operators and quality experts. In this paper, a real-time product quality monitoring system for auto-manufacturing industry is presented to provide the systematic method of predicting product qualities from real-time production data. The proposed framework consists of a product quality ontology model for complex manufacturing supply chain environments, and a real-time quality prediction tool using support vector machine algorithm that enables the quality monitoring system to classify the product quality patterns from the in-process production data. A door trim production example is illustrated to verify the proposed quality prediction model.
Journal of Korean Society of Industrial and Systems Engineering
/
v.40
no.3
/
pp.18-26
/
2017
Defense industries which require high reliability need an optimized quality management system with well-planned implementation. And the government should examine the overall status of defense industries, then establish practical policies with a proper support plan in required areas to upgrade the quality management level of manufacturers. Thus, DTaQ developed the model for 2 years from 2014, which specialized in quality management level analysis for defense industries. And a survey has been undertaken with that model by DTaQ and Korea Research Center in 2016. The surveyed companies randomly sampled among those which have more than 30 employees and delivery history over past 3 years, and finally 106 defense industries were selected. This paper present survey method and indexes for survey of defense industry quality management level. The survey was conducted in the order of planning, data collection and data processing, and the validity and reliability of the data were verified to increase objectivity of survey results. The survey contents mainly consist of system quality and management quality. System quality includes Product Development Management, Production Operation Management, supply chain quality management, Safety & Environment Management and Reliability Management, on the other hand, management quality includes Strategic Leadership, Human Resource Management, Customer Market Management and Information & Knowledge Management. Thus this proposes the current overall quality management status of the 106 defense industries and shows level differences by company sizes and manufacturing sectors based on the result of survey. Specifically, this paper enables to track the areas which need prompt government support with the policy directions to make quality management level higher. Therefore, it is expected that this can be used as reference data in establishing quality policies for military supplies in the future.
The purpose of this study was to evaluate water quality in Hapcheon dam via using the Hydrological Simulation Program-Fortran (HSPF) model and applied livestock reduction scenarios. Hapcheon dam watershed input data for the HSPF model were established using the stream, land use, digital elevation map and meteorological data and others. The HSPF model was calibrated and validated using the observed water quality data from 2000 to 2016. For water quality simulation, we calculated the generated and discharge loads of the population, livestock, industry and land use following the guideline provided by the Ministry of Environment. The pollutant data were obtained from National Institute of Environmental Research (NIER). The monthly discharge load were estimated by applying the delivery rate. The calibration and validation results showed that the annual mean BOD had a difference of 0.22 mg/L and an error of ±13 %, T-N had a difference of 0.66 mg/L and an error of ±16 % and T-P had a difference of 0.027 mg/L and an error of ±13 %. In order to evaluate the nonpoint pollutants management effects, we applied livestock reduction scenarios because livestock consists of the largest portion of pollutants. As a result of the 20 % of livestock reduction, BOD, T-N and T-P decreased by 3 %, 1 % and 3 %, respectively. When 40 % of livestock reduction was applied, BOD, T-N and T-P decreased by 5 %, 3 % and 4 %, respectively. Based on the results of this study, effective pollutant management methods can be applied to improve the water quality and achieve the target water quality of Hapcheon dam watershed.
Yerin Yu;Jeongeun Byun;Kuk Jin Bae;Sumin Seo;Younha Kim;Namgyu Kim
Journal of Information Technology Applications and Management
/
v.30
no.2
/
pp.1-18
/
2023
Recently, as technology development has accelerated and product life cycles have been shortened, it is necessary to derive key product features from customers in the R&D planning and evaluation stage. More companies want differentiated competitiveness by providing consumer-tailored products based on big data and artificial intelligence technology. To achieve this, the need to correctly grasp the required quality, which is a requirement of consumers, is increasing. However, the existing methods are centered on suppliers or domain experts, so there is a gap from the actual perspective of consumers. In other words, product attributes were defined by suppliers or field experts, but this may not consider consumers' actual perspective. Accordingly, the demand for deriving the product's main attributes through reviews containing consumers' perspectives has recently increased. Therefore, we propose a review data analysis-based required quality methodology containing customer requirements. Specifically, a pre-training language model with a good understanding of Korean reviews was established, consumer intent was correctly identified, and key contents were extracted from the review through a combination of KeyBERT and topic modeling to derive the required quality for each product. RevBERT, a Korean review domain-specific pre-training language model, was established through further pre-training. By comparing the existing pre-training language model KcBERT, we confirmed that RevBERT had a deeper understanding of customer reviews. In addition, all processes other than that of selecting the required quality were linked to the automation process, resulting in the automation of deriving the required quality based on data.
The machine learning algorithm has been widely used in water-related fields such as water resources, water management, hydrology, atmospheric science, water quality, water level prediction, weather forecasting, water discharge prediction, water quality forecasting, etc. However, water quality prediction studies based on the machine learning algorithm are limited compared to other water-related applications because of the limited water quality data. Most of the previous water quality prediction studies have predicted monthly water quality, which is useful information but not enough from a practical aspect. In this study, we predicted the dissolved oxygen (DO) using recurrent neural network with long short-term memory model recurrent neural network long-short term memory (RNN-LSTM) algorithms with hourly- and daily-datasets. Bugok Bridge in Oncheoncheon, located in Busan, where the data was collected in real time, was selected as the target for the DO prediction. The 10-month (temperature, wind speed, and relative humidity) data were used as time prediction inputs, and the 5-year (temperature, wind speed, relative humidity, and rainfall) data were used as the daily forecast inputs. Missing data were filled by linear interpolation. The prediction model was coded based on TensorFlow, an open-source library developed by Google. The performance of the RNN-LSTM algorithm for the hourly- or daily-based water quality prediction was tested and analyzed. Research results showed that the hourly data for the water quality is useful for machine learning, and the RNN-LSTM algorithm has potential to be used for hourly- or daily-based water quality forecasting.
In this paper, the water quality forecast was performed on the BOD of the Chungju Dam using the ARIMA model, which is a nonlinear statistics model, and the artificial neural network model. The monthly data of water quality were collected from 1991 to 2000. The most appropriate ARIMA model for Chungju dam was found to be the multiplicative seasonal ARIMA(1,0,1)(1,0,1)$_{12}$, model. While the artificial neural network model, which is used relatively often in recent days, forecasts new data by the strength of a learned matrix like human neurons. The BOD values were forecasted using the back-propagation algorithm of multi-layer perceptrons in this paper. Artificial neural network model was com- posed of two hidden layers and the node number of each hidden layer was designed fifteen. It was demonstrated that the ARIMA model was more appropriate in terms of changes around the overall average, but the artificial neural net-work model was more appropriate in terms of reflecting the minimum and the maximum values.s.
As society's relience on computerized information systems to support a wide range of activities proliferates, the long recognized importance for adequate data quality becomes imperative. Furthermore, current trends in information systems such as dispersal of the data resource together with its management have increased the difficulty of maintaining suitable levels of data integrity. Especially, the importance of adequate accounting (transaction) data quality has been long recognized and many procedures (extensive and often elaborate checks and controls) to prevent errors in accounting systems have been introduced and developed. Nevertheless, over time, even in the best maintained systems, deficiencies in stored data will develop. In order to maintain the accuracy and reliability of accounting data at certain level, periodic internal checks and error corrections (internal audits) are required as a part of internal control system. In this paper we develop a general data quality degradation (error accumulation ) and cost model for an account in which we have both error occurrences and error amounts and provide a closed form of optimal audit timing in terms of the number of transactions that should occur before an internal audit should be initiated. This paper also considers the cost- effectiveness of various audit types and different error prevention efforts and suggests how to select the most economical audit type and error prevention method.
Algal blooms have caused problems for drinking water as well as eutrophication. However it is difficult to control algal blooms by current warning manual in rainy season because the algal blooms happen in a few days. The water quality data, which have high correlations with Chlorophyll-a on Daecheongho station, were analyzed and chosen as input data of Artificial Neural Networks (ANN) for training pattern changes. ANN was applied to early forecasting of algal blooms, and ANN was assessed by forecasting errors. Water temperature, pH and Dissolved oxygen were important factors in the cross correlation analysis. Some water quality items like Total phosphorus and Total nitrogen showed similar pattern to the Chlorophyll-a changes with time lag. ANN model (No. 3), which was calibrated by water temperature, pH and DO data, showed lowest error. The combination of 1 day, 3 days, 7 days forecasting makes outputs more stable. When automatic monitoring data were used for algal bloom forecasting in Daecheong reservoir, ANN model must be trained by just input data which have high correlation with Chlorophyll-a concentration. Modular type model, which is combined with the output of each model, can be effectively used for stable forecasting.
Purpose: The purpose of this study was to test a hypothetical model of health-related quality of life in patients with heart failure. The hypothetical model was derived from the Wilson and Cleary's model, the Rector's model, and published research findings. Methods: Data from 103 patients with heart failure were analyzed to determine the best multivariate health-related quality of life model given variables derived from the prior studies. The statistics programs SPSS 12.0 and LISREL 8.7 program were used for descriptive statistics and covariance structure analysis respectively. Results: The overall fitness of the path final model was good(GFI=.97, AGFI=.95, NNFI=1.06, NFI=.96, p=.96). Symptoms were directly affected by gender. HYHA Class was directly affected by only gender. Physical functioning limitation was directly affected by exercise. Health perception was directly affected by economics, symptom, and physical functioning limitation. Depression was directly affected by exercise and health perception. Heath-related quality of life was directly affected by physical functioning limitation and depression, indirectly affected by gender, economics, exercise, symptoms, NYHA Class, and health perception. This path analysis model explained 51% of health-related quality of life in patients with heart failure. Conclusion: To improve of health-related quality of life with heart failure patients, it is necessary to make nursing interventions for physical functioning and depression.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.