Magazine of the Korean Society of Agricultural Engineers
/
v.31
no.4
/
pp.111-122
/
1989
A multiple box model which is suitable for the prediction of water quality in shallow lakes with active mixing is a water quality model expected to be used widely in estuary reservoir. In this study, a multiple box water quality model for estuary reservoirs (MBQER) was developed arid the applicability of the MBQER was tested by applying data obtained from Asan-estuary reservoir. The results of this study can be summarized as follows. 1. The MBQER, dynamic water quality model, was developed to estimate 10-day water qualities of estuary reservoirs. For the proper analysis and the application of hydraulics needed to build a model, lake hydraulics was simplified by condisering only hydrological inflow and lake mixing currents. The box division in the MBQER is longitudinal one dimension for upper and middle part, and two layers for lower part of the reservoir. 2. The methods of box division for the multiple box model were ekamined and applied to Asan-estuary reservoir. For determining the number of boxes, Pe number and Pk number were used. In case of three boxes, the error by the model simplification would be estimated about 5 % Therefore, in Asan reservoir, the proper number of boxes was three. 3. The MBQER was calibrated and verified using measured data in Asan-estuary reservoir from 1986 to 1988. The Root Mean Squares(RMS) for the differences between measured data and simulated results by the MBQER were 1.10$^{\circ}$C C for water temperature, 75.8mg/1 for salinity, 0.082mg/1 for total-phosphorus showing good estimations. 4. Through the simulation of water temperature and salinity by the MBQER, the exchange flow and the mixing coefficients for the estuary lake were determined. As a result of simulation, the horizontal mixing coefficients in Asan-estuary reservoir were in the range of 1.07X 105 to 1.12X 105 cm$^2$/sec and vertical mixing coefficient was 2.90X 10-1 cm$^2$/sec.
The purpose of this study was to develop a process management system to manage ingot fabrication and the quality of the ingot. The ingot is the first manufactured material of wafers. Operating data (trace parameters) were collected on-line but quality data (measurement parameters) were measured by sampling inspection. The quality parameters were applied to evaluate the quality. Thus, preprocessing was necessary to extract useful information from the quality data. First, statistical methods were employed for data generation, and then modeling was accomplished, using the generated data, to improve the performance of the models. The function of the models is to predict the quality corresponding to the control parameters. The dynamic polynomial neural network (DPNN) was used for data modeling that used the ingot fabrication data.
The stochastic variance and structures of time series data on air quality were examined by employing the techniques of autocorrelation function, variance spectrum, fourier series, ARIMA model. Among the air quality properties of atmosphere, SO$_{2}$ is one of the most siginificant and widely measured parameters. In the study, the air quality data were included hourly observations on SO$_{2}$ TSP and O$_{3}$. The data were measured by automatic recording instrument installed in Kwanghwamoon during February and March in 1991. The results of study were as follows 1. Hourly air quality series varied with the domiant 24 hour periodicity and the 12 hour periodic variation was also observed. 2. The correlation coefficients between SO$_{2}$ and O$_{3}$ is -0.4735. 3. In simulating or forecasting variation in SO$_{2}$ ARIMA models are on a useful tools. The multiplicative seasonal ARIMA (1, 1, 0) (0, 2, 1)$_{24}$ model provided satisfactory results for hourly SO$_{2}$ time series.
Kim, Nam-Hong;Lee, Syeung-Yeol;Won, Yong-Hoan;Kim, Kwan-Hyung;Lee, Sung-Uk
Proceedings of the KSR Conference
/
2009.05a
/
pp.66-72
/
2009
In order to forecast the progress of the track irregularity, we should observe the long-term track quality and divide a track into some separated divisions which have homogeneous property. For this, we define the division of track which has homogeneous property as a 'Segment' and manage the 'TQI(Track Quality Index)' using track induction data based on each segment. In this study, we introduce some methods of estimating track quality and figure out the TQIs of sample section using new FRA TQI method. In addition, we conducted a basic study of the forecasting model for the progress of track irregularity by analyzing track maintenance data.
In this study, we propose a new $PM_{10}$ forecasting model for Seoul region using DNN(Deep Neural Network) and secondary data. The previous numerical and Julian forecast model have been developed using primary data such as weather and air quality measurements. These models give excellent results for accuracy and false alarms, but POD is not good for the daily life usage. To solve this problem, we develop four secondary factors composed with primary data, which reflect the correlations between primary factors and high $PM_{10}$ concentrations. The proposed 4 models are A(Anomaly), BT(Back trajectory), CB(Contribution), CS(Cosine similarity), and ALL(model using all 4 secondary data). Among them, model ALL shows the best performance in all indicators, especially the PODs are improved.
EFDC model, which is capable of handling both hydrodynamic and water quality analysis has come to use for many recent studies. In order to assess the applicability of the EFDC model, it was applied to Nakdong river. Hydrodynamic and water quality analysis were carried out for Nakbon GH and HI sections chosen as the area of study with gaged data from 2008 to 2009. The comparison was made between water quality simulation results and observed data over water temperature, COD, TOC, DO, TN and TP. On the contrary, a conversion formula was derived to calculate BOD which the EFDC model cannot directly calculates and it was compared to measured data. In this study, it was determined that the EFDC model well represents the behavior of both hydrodynamics and water quality. However, further research on COD, TOC and accurate conversion of BOD needs to be conducted for efficient application to domestic water quality analysis.
The IC packaging industry heavily relies on shop floor information, necessitating the development of a model to flexibly define shop floor information and timely handle manufacturing data. This study presents a novel data model of product manufacturing flow to define shop floor information to effectively respond to accelerated developments in IC package industry. The proposed data model consists of four modules: operation template setup, general process setup, enhanced bill of manufacture (EBOMfr) setup, and work-order process setup. The data model can flexibly define the required shop floor information and decision rules for shop floor product manufacturing flow, allowing one to easily adopt changes of the product and on the shop floor. However, to handle floor dynamics of the IC packaging industry, this work also proposes a WIP (i.e. work-in-process) system for monitoring and controlling the product manufacturing flow on the shop floor. The WIP system integrates the data model with a WIP execution module. Furthermore, an illustrative example, the MIRL WIP System, developed by Mechanical Industrial Research Laboratories of Industrial Technology Research Institute, demonstrates the effectiveness of the proposed model.
Purpose: The purpose of this study was to identify factors in quality of life and to construct a model of quality of life in longevity region dwelling elders. Methods: Data were collected from January to July, 2010 through direct interviews and a self-reporting questionnaire survey with 171 subjects who were living at the S County (gun). The collected data were analyzed by using the SPSS/WIN 19.0 and AMOS 19.0 programs. Results: Economic status, social support, health behavior and depression were shown to have direct and total effects on quality of life and were statistically significant. Health status had indirect and total effects on quality of life and was statistically significant. And, self-efficacy had direct, indirect and total effects on quality of life and was statistically significant. These variables of the hypothetical model accounted for 41.4% of quality of life. Conclusion: In order to improve quality of life in longevity region dwelling elders, it is necessary to provide economic support and social support services in tandem with social welfare. And, we need to apply interventions strengthening self-efficacy, health behavior, and health status, and decreasing depression.
The modern era of water quality modeling in the United States began in the 1960s. Pushed by advances in computer technology as well as environmental sciences, water quality modeling evolved through five broad periods: (1) initial model development with mainframe computers (1960s - mid 1970s), (2) model refinement and generalization with minicomputers (mid 1970s - mid 1980s), (3) model standardization and support with microcomputers (mid 1980s - mid 1990s), (4) better model access and performance with faster desktop computers running Windows and local area networks linked to the Internet (mid 1990s - early 2000s), and (5) model integration and widespread use of the Internet (early 2000s - present). Improved computer technology continues to drive improvements in water quality models, including more detailed environmental analysis (spatially and temporally), better user interfaces and GIS software, more accessibility to environmental data from on-line repositories, and more robust modeling frameworks linking hydrodynamics, water quality, watershed and atmospheric models. Driven by regulatory needs and advancing technology, water quality modeling will continue to improve to better address more complicated water bodies and pollutant types, and more complicated management questions. This manuscript describes historical trends in water quality model development in the United States, reviews current efforts, and projects promising future directions.
This study has performed to investigate and evaluate the simulation model of steam Water Quality and the simulated results have 매내 been compared with the observed data in the Han River. The predicted BOD, Total-N, Coliform concentrations in the downstream of the Chungrang-Cheon are 8.6m/1, 4.5mg/1 and $3.7X10^5$ respectively. It is interesting to note that the results simulated based on the WQRRS model are extremely in good agreement and also are very much comparable with those observed data reported previously references.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.