When analyzing high dimensional data such as text data, if we input all the variables as explanatory variables, statistical learning procedures may suffer from over-fitting problems. Furthermore, computational efficiency can deteriorate with a large number of variables. Dimensionality reduction techniques such as feature selection or feature extraction are useful for dealing with these problems. The sparse principal component analysis (SPCA) is one of the regularized least squares methods which employs an elastic net-type objective function. The SPCA can be used to remove insignificant principal components and identify important variables from noisy observations. In this study, we propose a dimension reduction procedure for text data based on the SPCA. Applying the proposed procedure to real data, we find that the reduced feature set maintains sufficient information in text data while the size of the feature set is reduced by removing redundant variables. As a result, the proposed procedure can improve classification accuracy and computational efficiency, especially for some classifiers such as the k-nearest neighbors algorithm.
Communications for Statistical Applications and Methods
/
v.19
no.4
/
pp.559-569
/
2012
Compositional data consist of compositions that are non-negative vectors of proportions with the unit-sum constraint. In disciplines such as petrology and archaeometry, it is fundamental to statistically analyze this type of data. Aitchison (1983) introduced a log-contrast principal component analysis that involves logratio transformed data, as a dimension-reduction technique to understand and interpret the structure of compositional data. However, the analysis is not usable when zero values are present in the data. In this paper, we introduce 4 possible methods to reduce the dimension of compositional data with zero values. Two real data sets are analyzed using the methods and the obtained results are compared.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.12
no.1
/
pp.1-5
/
2012
Data reduction has been used widely in data mining for convenient analysis. Principal component analysis (PCA) and factor analysis (FA) methods are popular techniques. The PCA and FA reduce the number of variables to avoid the curse of dimensionality. The curse of dimensionality is to increase the computing time exponentially in proportion to the number of variables. So, many methods have been published for dimension reduction. Also, data augmentation is another approach to analyze data efficiently. Support vector machine (SVM) algorithm is a representative technique for dimension augmentation. The SVM maps original data to a feature space with high dimension to get the optimal decision plane. Both data reduction and augmentation have been used to solve diverse problems in data analysis. In this paper, we compare the strengths and weaknesses of dimension reduction and augmentation for classification and propose a classification method using data reduction for classification. We will carry out experiments for comparative studies to verify the performance of this research.
Designers need a lot of information to determine the principal dimensions in the initial stage of boat design, and most of the information they need can be obtained by investigating and analyzing similar existing boat data. In addition, the principal dimensions that are determined have an impact throughout the design process (basic/detailed design), which in turn leads directly to the stability and performance of the boat. Therefore, in this study, the initial design system for the boat (design support platform) was developed using a correlation analysis with existing data for more than 700 boats. It was confirmed that the designer could conveniently and reasonably derive and determine the principal dimensions for a boat in the initial design stage, for the 50ft-class of small and high-speed boats.
For displaying multivariate numerical data on a 2D plane by the projection, principal components biplot and the GGobi are two main tools of data visualization. The biplot is very useful for capturing the global shape of the dataset, by representing $n$ observations and $p$ variables simultaneously on a single graph. The GGobi shows a dynamic movie of the images of $n$ observations projected onto a sequence of unit vectors floating on the $p$-dimensional sphere. Even though these two methods are certainly very valuable, there are drawbacks. The biplot is too condensed to describe the detailed parts of the data, and the GGobi is too burdensome for ordinary data analyses. In this paper, "the local projective display(LPD)" is proposed for visualizing multivariate numerical data. Main steps of the LDP are 1) $k$-means clustering of the data into $k$ subsets, 2) drawing $k$ principal components biplots of individual subsets, and 3) sequencing $k$ plots by Hurley's (2004) endlink algorithm for cognitive continuity.
The objectives of this study were to develop an evaluation method of regional vulnerability to agricultural drought and to classify the vulnerability patterns. In order to test the method, 24 city or county areas of Gyeonggi-do were chose. First, statistic data and digital maps referred for agricultural drought were defined, and the input data of 31 items were set up from 5 categories: land use factor, water resource factor, climate factor, topographic and soil factor, and agricultural production foundation factor. Second, for simplification of the factors, principal component analysis was carried out, and eventually 4 principal components which explain about 80.8% of total variance were extracted. Each of the principal components was explained into the vulnerability components of scale factor, geographical factor, weather factor and agricultural production foundation factor. Next, DVIP (Drought Vulnerability Index for Paddy), was calculated using factor scores from principal components. Last, by means of statistical cluster analysis on the DVIP, the study area was classified as 5 patterns from A to E. The cluster A corresponds to the area where the agricultural industry is insignificant and the agricultural foundation is little equipped, and the cluster B includes typical agricultural areas where the cultivation areas are large but irrigation facilities are still insufficient. As for the cluster C, the corresponding areas are vulnerable to the climate change, and the D cluster applies to the area with extensive forests and high elevation farmlands. The last cluster I indicates the areas where the farmlands are small but most of them are irrigated as much.
The purpose of this paper was to clarify the actual conditions of the 'Dietary externalization' mainly by using the economic and nutrition-related data, accompanied by the economic development in Korea and Japan. 'Modernization of food style' and other modernization have taken place, among which 'Dietary externalization' in particular has recently drawn interest. At the time this paper clarified with econometric analysis whether there are differences between the two countries in term of the modernization of food style and dietary externalization trend. The trends of Dietary externalization of both Korea and Japan were studied using Principal Component Analysis method. The food subgroup were investigated based on the annual report on the household income and expenditure survey of Korea and the annual report on the family income and expenditure survey of Japan. The statistical data from both country were analyzed by SAS program. The results are as follows; 1. In Korea, the ratio of carbohydrates in the total calorie intake is quite high and animal protein is rather low compared to those in Japan. 2. Traditional food such as grains and vegetables are consumed much more in Korea than in Japan. 3. The Principal Component 1, 2 were extracted in both countries during the whole analysis period, which suggested the 'Dietary externalization' 4. Principal Component 1 has a positive factor loaded in all food items including meals outside the home and process food. In other words, it is apparent that the 'Dietary externalization' tread in Korea has a simple pattern suggesting that all externalization related items are on the rise. 5. Principal component 1, 2 which indicated the dietary externalization, were detected in Japan.
The purpose of this study is to propose a new on-line nonlinear PCA(OL-NPCA) method for a nonlinear feature extraction from the incremental data. Kernel PCA(KPCA) is widely used for nonlinear feature extraction, however, it has been pointed out that KPCA has the following problems. First, applying KPCA to N patterns requires storing and finding the eigenvectors of a N${\times}$N kernel matrix, which is infeasible for a large number of data N. Second problem is that in order to update the eigenvectors with an another data, the whole eigenspace should be recomputed. OL-NPCA overcomes these problems by incremental eigenspace update method with a feature mapping function. According to the experimental results, which comes from applying OL-NPCA to a toy and a large data problem, OL-NPCA shows following advantages. First, OL-NPCA is more efficient in memory requirement than KPCA. Second advantage is that OL-NPCA is comparable in performance to KPCA. Furthermore, performance of OL-NPCA can be easily improved by re-learning the data.
This paper proposes a pre-processing method and a dimensional reduction method in the analysis of shopping carts where there are many correlations between variables when dividing the types of consumers in the agri-food consumer panel data. Cluster analysis is a widely used method for dividing observational objects into several clusters in multivariate data. However, cluster analysis through dimensional reduction may be more effective when several variables are related. In this paper, the food consumption data surveyed of 1,987 households was clustered using the K-means method, and 17 variables were re-selected to divide it into the clusters. Principal component analysis and factor analysis were compared as the solution for multicollinearity problems and as the way to reduce dimensions for clustering. In this study, both principal component analysis and factor analysis reduced the dataset into two dimensions. Although the principal component analysis divided the dataset into three clusters, it did not seem that the difference among the characteristics of the cluster appeared well. However, the characteristics of the clusters in the consumption pattern were well distinguished under the factor analysis method.
Journal of the Society of Naval Architects of Korea
/
v.61
no.1
/
pp.8-18
/
2024
The present study concerns reduced order modeling of a marine diesel engine, which can be used for outlier detection in status monitoring and carbon intensity index calculation. Principal Component Analysis (PCA) is introduced for the reduced order modeling, focusing on the feasibility of detecting and treating nonlinear variables. By cross-correlation, it is found that there are seven non-linear data channels among 23 data channels, i.e., fuel mode, exhaust gas temperature after the turbocharger, and cylinder coolant temperatures. The dataset is handled so that the mean is located at the nominal continuous rating. Polynomial presentation of the dataset is also applied to reflect the linearity between the engine speed and other channels. The first principal mode shows strong effects of linearity of the most data channels to show the linearity of the system. The non-linear variables are effectively explained by other modes. second mode concerns the temperature of the cylinder cooling water, which shows small correlation with other variables. The third and fourth modes correlates the fuel mode and turbocharger exhaust gas temperature, which have inferior linearity to other channels. PCA is proven to be applicable to data given in binary type of fuel mode selection, as well as numerical type data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.