• 제목/요약/키워드: Data Piping

검색결과 265건 처리시간 0.022초

원자로 냉각재 계통을 지지하는 대구경 유압식 스너버의 이동거리 해석 (Stroke Analysis of Large Bore Hydraulic Snubber Supporting Reactor Coolant System)

  • 이상호;윤기석;전장환;박명규;엄세윤
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.61-67
    • /
    • 1995
  • The steam generator, one of the major components in the reactor coolant system, plays an important role in transferring the thermal energy made in the reactor during normal operation to the secondary side and producing steam to drive turbine. A hydraulic snubber system is used in order to protect the steam generator under the dynamic loading condition and to absorb the thermal expansion transmitted by the reactor coolant piping due to high temperature and pressure during normal operation. In this study, the model for a geometrical linkage system is presented to analyze the snubber stroke of the steam generator and the parameters in the snubber stroke analysis are investigated. A method to analyze lever ratio of the linkage system which is required in the process of determining the snubber stiffness value is also presented. To discuss the validation of the suggested analysis, the analysis results are compared with the measured data during the hot functional test for the standardized 1000 Mwe pressurized water reactor plant under the construction.

  • PDF

인공신경망을 이용한 주조 스테인리스강의 열취화 민감도 평가 (Evaluation of Thermal Embrittlement Susceptibility in Cast Austenitic Stainless Steel Using Artificial Neural Network)

  • 김철;박흥배;진태은;정일석
    • 대한기계학회논문집A
    • /
    • 제28권4호
    • /
    • pp.460-466
    • /
    • 2004
  • Cast austenitic stainless steel is used for several components, such as primary coolant piping, elbow, pump casing and valve bodies in light water reactors. These components are subject to thermal aging at the reactor operating temperature. Thermal aging results in spinodal decomposition of the delta-ferrite leading to increased strength and decreased toughness. This study shows that ferrite content can be predicted by use of the artificial neural network. The neural network has trained teaming data of chemical components and ferrite contents using backpropagation learning process. The predicted results of the ferrite content using trained neural network are in good agreement with experimental ones.

Pipeline wall thinning rate prediction model based on machine learning

  • Moon, Seongin;Kim, Kyungmo;Lee, Gyeong-Geun;Yu, Yongkyun;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4060-4066
    • /
    • 2021
  • Flow-accelerated corrosion (FAC) of carbon steel piping is a significant problem in nuclear power plants. The basic process of FAC is currently understood relatively well; however, the accuracy of prediction models of the wall-thinning rate under an FAC environment is not reliable. Herein, we propose a methodology to construct pipe wall-thinning rate prediction models using artificial neural networks and a convolutional neural network, which is confined to a straight pipe without geometric changes. Furthermore, a methodology to generate training data is proposed to efficiently train the neural network for the development of a machine learning-based FAC prediction model. Consequently, it is concluded that machine learning can be used to construct pipe wall thinning rate prediction models and optimize the number of training datasets for training the machine learning algorithm. The proposed methodology can be applied to efficiently generate a large dataset from an FAC test to develop a wall thinning rate prediction model for a real situation.

터보펌프 Cavitation 성능시험기 개발 및 성능시험에 관한 연구 (Development of Turbopump Cavitation Performance Test Facility and the Test of Inducer Performance)

  • 손동기;김춘택;윤민수;차봉준;김진한;양수석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.619-624
    • /
    • 2001
  • A performance test facility for turbopump inducer cavitation was developed and the inducer cavitation performance tests were performed. Major components of the performance test facility are driving unit, test section, piping, water tank, and data acquisition and control system. The maximum of testing capability of this facility are as follows: flow rate - 30kg/s; pressure - 13 bar; rotational speed 10,000rpm. This cavitation test facility is characterized by the booster pump installed at the outlet of the pump that extends the flow rate range, and by the pressure control system that makes the line pressure down to vapor pressure. The vacuum pump is used for removing the dissolved air in the water as well as the line pressure. Performance tests were carried out and preliminary data of test model inducer were obtained. The cavitation performance test and cavitation bubble flow visualization were also made. This facility is originally designed for turbopump inducer performance test and cavitation test. However it can be applied to the pump impeller performance test in the future with little modification.

  • PDF

평판 핀 튜브 열교환기의 공기측 강제대류 열전달계수에 대한 실험 및 수치계산 (Experimental Measurement and Numerical Computation on the Air-Side Forced Convective Heat Tranfer Coefficient in Plate Fin-Tube Exchangers)

  • 윤영환;팽진기;윤건식
    • 설비공학논문집
    • /
    • 제18권9호
    • /
    • pp.729-737
    • /
    • 2006
  • Air-side forced convective heat transfer of a plate fin-tube heat exchanger is investigated by experimental measurement and numerical computation. The heat exchanger consists of staggered arrangement of refrigerant pipes of 10.2 m diameter and the pitch of fins is 3.5 m. In the experimental study, the forced convective heat transfer is measured at Reynolds number of 1082, 1397, 1486, 1591 and 1649 based on diameter of refrigerant piping and mean velocity. Average Nusselt number for the convective heat transfer coefficient is also computed for the same Reynolds number by commercial software of STAR-CD with standard $k-{\varepsilon}$ turbulent model. It is found that the relative errors of average Nusselt numbers between experimental and numerical data are less than 6 percentage in Reynolds number of $1082{\sim}1649$. The errors between experiment and other correlations are ranged from 7% to 32.4%. But the correlation of Kim at al is closest to the experimental data within 7% of the relative error.

지하수 수위가 개방형 지열시스템 성능에 미치는 영향에 관한 연구 (A Study of the Influence of Groundwater Level on the System Performance of Open Loop Geothermal System)

  • 김진상;남유진
    • 한국지열·수열에너지학회논문집
    • /
    • 제9권3호
    • /
    • pp.1-10
    • /
    • 2013
  • Open loop geothermal heat pumps have great potential where the groundwater resources are sufficient. Performance of open loop geothermal heat pump systems is considered higher than that of ground source heat pumps. Head and power calculation of submersible pumps, heat pump units, and piping are numerically based on regression data. Results shows that the system performance drops as the water level drops, and the lowest flow rates generally achieve the highest system COPs. The highest achievable cooling system COPs become 6.34, 6.12, and 5.95 as the groundwater levels are 5m, 15m, and 25m. The highest heating system COPs also become 4.59, 4.37, and 4.20. Groundwater level and submersible pump selection greatly influence the system performance of open loop geothermal heat pumps. It needs to be analysed during the design process of open loop geothermal heat pump system, possibly with analysis tools that include wide range of pump product data.

원자력 배관의 파단전누설 해석을 위한 개선된 참조응력법의 수치해석적 검증 (Application of enhanced Reference Stress Method to Nuclear Piping LBB Analysis : Finite Element Validation)

  • 허남수;김윤재;김영진
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.741-747
    • /
    • 2001
  • Three-dimensional, elastic-plastic finite element analyses for circumferential through-wall cracked pipes are performed using actual tensile data of stainless steels, for two purposes. The first one is to validate the recently-proposed enhanced reference stress (ERS) method to estimate the J-integral and COD for circumferential through-wall cracked pipes. The second one is to compare those results with the GE/EPRI estimations. It is found that the J-integral and COD estimations according to the GE/EPRI method can be very sensitive to how the stress-strain data are fitted using the Ramberg-Osgood relation. Moreover, no tendency can be found regarding the most appropriate fitting range for the Ramberg-Osgood fit. On the contrary, the J-integral and COD estimations based on the ERS method give more accurate results than the GE/EPRI estimation. The present results provide confidence in applying the proposed method to the Leak-Before-Break(LBB) analysis.

STRAIN RATE CHANGE FROM 0.04 TO 0.004%/S IN AN ENVIRONMENTAL FATIGUE TEST OF CF8M CAST STAINLESS STEEL

  • Jeong, Ill-Seok;Kim, Wan-Jae;Kim, Tae-Ryong;Jeon, Hyun-Ik
    • Nuclear Engineering and Technology
    • /
    • 제43권1호
    • /
    • pp.83-88
    • /
    • 2011
  • To define the effect of strain rate variation from 0.04% to 0.004%/s on environmental fatigue of CF8M cast stainless steel, which is used as a primary piping material in nuclear power plants, low-cycle fatigue tests were conducted at operating pressure and temperature condition of a pressurized water reactor, 15 MPa and $315^{\circ}C$, respectively. A high-pressure and high-temperature autoclave and cylindrical solid fatigue specimens were used for the strain-controlled low-cycle environmental fatigue tests. It was observed that the fatigue life of CF8M stainless steel is shortened as the strain rate decreases. Due to the effect of test temperature, the fatigue data of NUREG-6909 appears a slightly shorter than that obtained by KEPRI at the same stress amplitude of $1{\times}10^3$ MPa. The environmental fatigue correction factor $F_{en}$'s calculated with inputs of the test data increases with high strain amplitude, while the $F_{en}$'s of NUREG-6909 remain constant regardless of strain amplitude.

선체모델링에 있어서 구조면의 정의 및 표현 (Representation of Structural Surface for Hull Modeling)

  • 김광욱;김원돈;남종호
    • 대한조선학회논문집
    • /
    • 제29권2호
    • /
    • pp.30-37
    • /
    • 1992
  • 선체는 매우 복잡한 구조물이므로 설계 및 생산의 효율적인 수행을 위하여 선체구조의 모델링에 의한 작업이 필수적이다. 선체모델 구축에 있어서 구조면의 모델링은 초기선형정의에서부터, 선각정보처리, 구획배치, 의장설계, 배관설계, 구조해석 등 선체관련분야와 직접 연관된다. 본 연구에서는 구조면의 효과적인 모델링을 위하여 구조면들간의 위상학적인 자료구조를 구성하므로써 선체구조의 기하학적 정보를 설계의 단계에 따라 발전시켜 나가고 효율적으로 변경시킬 수 있도록 하였다. 본 연구에서 수행된 구조면의 모델링은 선체설계에서부터 생산에 이르기까지 일관된 정보처리를 위한 통합선체모델(Unified Hull Model)구축의 기초가 될 것이다. 구축된 모델의 가시화를 위하여 컴퓨터그래픽스를 이용하여 선체모델을 실물감 있게 표현하였다.

  • PDF

Proposal of the Penalty Factor Equations Considering Weld Strength Over-Match

  • Kim, Jong-Sung;Jeong, Jae-Wook;Lee, Kang-Yong
    • Nuclear Engineering and Technology
    • /
    • 제49권4호
    • /
    • pp.838-849
    • /
    • 2017
  • This paper proposes penalty factor equations that take into consideration the weld strength over-match given in the classified form similar to the revised equations presented in the Code Case N-779 via cyclic elastic-plastic finite element analysis. It was found that the $K_e$ analysis data reflecting elastic follow-up can be consolidated by normalizing the primary-plus-secondary stress intensity ranges excluding the nonlinear thermal stress intensity component, $S_n$ to over-match degree of yield strength, $M_F$. For the effect of over-match on $K_n{\times}K_{\nu}$, dispersion of the $K_n{\times}K_{\nu}$ analysis data can be sharply reduced by dividing total stress intensity range, excluding local thermal stresses, $S_{p-lt}$ by $M_F$. Finally, the proposed equations were applied to the weld between the safe end and the piping of a pressurizer surge nozzle in pressurized water reactors in order to calculate a cumulative usage factor. The cumulative usage factor was then compared with those derived by the previous $K_e$ factor equations. The result shows that application of the proposed equations can significantly reduce conservatism of fatigue assessment using the previous $K_e$ factor equations.