• Title/Summary/Keyword: Data Path Template

Search Result 3, Processing Time 0.016 seconds

A Short Path Data Routing Protocol for Wireless Sensor Network (단거리 데이터 전달 무선 센서네트워크 라우팅 기법)

  • Ahn, Kwang-Seon
    • The KIPS Transactions:PartC
    • /
    • v.14C no.5
    • /
    • pp.395-402
    • /
    • 2007
  • Wireless sensor networks have many sensor nodes which response sudden events in a sensor fields. Some efficient routing protocol is required in a sensor networks with mobile sink node. A data-path template is offered for the data announcement and data request from source node and sink node respectively. Sensed data are transferred from source node to sink node using short-distance calculation. Typical protocols for the wireless networks with mobile sink are TTDD(Two-Tier Data Dissemination) and CBPER(Cluster-Based Power-Efficient Routing). The porposed SPDR(Short-Path Data Routing) protocol in this paper shows more improved energy efficiencies from the result of simulations than the typical protocols.

Recognition of Gap between base Plates for Automated Welding of Thick Plates (후판 자동용접을 위한 용접물의 갭 측정)

  • Yi, Hwa-Cho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.37-45
    • /
    • 1999
  • Many automated welding equipment are used in the industry. However, there are some problems to get quality welds because of the geometric error, thermal distortion, and incorrect joint fit-up. These factors can make the gap between base plates in case of a thick plate welding. The welding product with the quality welds can not be obtained without consideration of the gap. In this paper, the robot path and welding conditions are modified to get the quality weld by detecting the position and size of the gap. In this work, a low-priced laser range sensor is used. The 3-dimensional information is obtained using the motion of a robot, which holds a laser range sensor. The position and size of the gap is calculated using signal processing of the measured 3-dimensional information of joint profile geometry. The data measured by a laser range sensor is segmented by an iterative end point method. The segmented data is optimized by the least square method. The existence of gap is detected by comparing the data with the segmented shape of template. The effects of robot measuring speed and gap size are also tested. The recognizability fo the gap is verified as good by comparing the real joint profile and the calculated joint profile using the signal processing.

  • PDF

Performance Enhancement of the Attitude Estimation using Small Quadrotor by Vision-based Marker Tracking (영상기반 물체추적에 의한 소형 쿼드로터의 자세추정 성능향상)

  • Kang, Seokyong;Choi, Jongwhan;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.444-450
    • /
    • 2015
  • The accuracy of small and low cost CCD camera is insufficient to provide data for precisely tracking unmanned aerial vehicles(UAVs). This study shows how UAV can hover on a human targeted tracking object by using CCD camera rather than imprecise GPS data. To realize this, UAVs need to recognize their attitude and position in known environment as well as unknown environment. Moreover, it is necessary for their localization to occur naturally. It is desirable for an UAV to estimate of his attitude by environment recognition for UAV hovering, as one of the best important problems. In this paper, we describe a method for the attitude of an UAV using image information of a maker on the floor. This method combines the observed position from GPS sensors and the estimated attitude from the images captured by a fixed camera to estimate an UAV. Using the a priori known path of an UAV in the world coordinates and a perspective camera model, we derive the geometric constraint equations which represent the relation between image frame coordinates for a marker on the floor and the estimated UAV's attitude. Since the equations are based on the estimated position, the measurement error may exist all the time. The proposed method utilizes the error between the observed and estimated image coordinates to localize the UAV. The Kalman filter scheme is applied for this method. its performance is verified by the image processing results and the experiment.