• Title/Summary/Keyword: Data Paper

Search Result 56,851, Processing Time 0.084 seconds

The Estimation of the Population by Using the Estimated Appropriate Rate Based on Customized Classification of Agriculture, Livestock and Food Industry (농축산식품산업 특수분류 기반 추정적격률을 이용한 모집단 추정 )

  • Wee Seong Seung;Lee MinCheol;Kim Jin Min;Shin Yong Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.3
    • /
    • pp.117-124
    • /
    • 2023
  • Through reorganization in 2008, The ministry of Agriculture, Food and Rural Affairs integrated management of the food industry by transferred functions which was scattered in the Ministry of Health and Welfare, and established comprehensive policies covering the primary, secondary, and tertiary industries. In the agricultural industry sector, new business concepts such as smart farm and food tech have recently emerged alongside the fourth industrial revolution. In order for the Ministry of Agriculture, Food, and Rural Affairs to develop appropriate policies for the fourth industrial revolution, it is necessary to accurately estimate the size of agricultural and livestock-related businesses. In 2017, the Ministry of Agriculture, Food, and Rural Affairs initiated research for the agriculture, livestock and food industry's special classification, which was approved by the National Statistical Office in 2020. The estimation of the agriculture, livestock and food industry's size based on special classification is crucial because it has a substantial impact on the formulation and significance of policies. In this paper, the appropriate rate was derived from samples extracted from the special classification and the Korean standard industrial classification. Proposed are a method for estimating the population of the agricultural and livestock food industry, as well as a method for calculating the appropriate rate that more accurately reflects the population than the method currently in use.

A Study on Reading Survey for the Establishment of Goyang City Reading Culture Promotion Plan (고양시 독서문화진흥 종합계획 수립을 위한 독서실태 조사 연구)

  • Min Sun Song;Inho Chang;Gum-Sook Hoang;Soo-Kyoung Kim
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.57 no.1
    • /
    • pp.285-308
    • /
    • 2023
  • This study was carried out to survey and analyze the actual state of reading in Goyang citizens, and to utilize it as a base data for Goyang City's 2nd 'Reading Culture Promotion Plan'. To do this, including references related to reading survey and the 2021 National Reading Survey questionnaire survey questions, the questionnaires that reflected characteristics of adult and student respondents constructed. Then, the survey of 960 adults and 540 students in Goyang City conducted and analyzed the results, and several useful suggestions deduced for 'Goyang City Reading Culture Promotion Plan'. First, the category of reading materials have to be expanded from the paper media to the various media. Second, the expandation of collections in libraries and the services that will help actually buy books are necessary. Third, various reading programs should develop, and the opportunities for citizens to participate in reading and club activities through online should also be increased. Fourth, the facilities and service environments for activating reading should ensure that the accessibility of everyday life. Finally, among the existing reading culture promotion projects, the 'smart libraries', 'Inter-library loan services', 'reading and cultural programs management', and 'Goyang Book Pay' projects need to be sustained and expanded. This study is significant in that it has investigated the actual reading situation of real citizens and has converged the opinions necessary for setting the direction of the effective 'Goyang City reading culture promotion plan'.

A Study on the Blockchain based Frequency Allocation Process for Private 5G (블록체인 기반 5G 특화망 주파수 할당 프로세스 연구)

  • Won-Seok Yoo;Won-Cheol Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.24-32
    • /
    • 2023
  • The current Private 5G use procedure goes through the step of application examination, use and usage inspection, and can be divided in to application, examination step as a procedure before frequency allocation, and use, usage inspection step as a procedure after frequency allocation. Various types of documents are required to apply for a Private 5G, and due to the document screening process and radio station inspection for using Private 5G frequencies, the procedure for Private 5G applicants to use Private 5G is complicated and takes a considerable amount of time. In this paper, we proposed Frequency Allocation Process for Private 5G using a blockchain platform, which is fast and simplified than the current procedure. Through the use of a blockchain platform and NFT (Non-Fungible Token), reliability and integrity of the data required in the frequency allocation process were secured, and security of frequency usage information was maintained and a reliable Private 5G frequency allocation process was established. Also by applying the RPA system that minimizes human intervention, fairness was secured in the process of allocating Private 5G. Finally, the frequency allocation process of Private 5G based on the Ethereum blockchain was performed though a simulation.

Dynamic Channel Management Scheme for Device-to-device Communication in Next Generation Downlink Cellular Networks (차세대 하향링크 셀룰러 네트워크에서 단말 간 직접 통신을 위한 유동적 채널관리 방법)

  • Se-Jin Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Recently, the technology of device-to-device(D2D) communication has been receiving big attention to improve the system performance since the amount of high quality/large capacity data traffic from smart phones and various devices of Internet of Things increase rapidly in 5G/6G based next generation cellular networks. However, even though the system performance of macro cells increase by reusing the frequency, the performance of macro user equipments(MUEs) decrease because of the strong interference from D2D user equipments(DUEs). Therefore, this paper proposes a dynamic channel management(DCM) scheme for DUEs to guarantee the performance of MUEs as the number of DUEs increases in next generation downlink cellular networks. In the proposed D2D DCM scheme, macro base stations dynamically assign subchannels to DUEs based on the interference information and signal to interference and noise ratio(SINR) of MUEs. Simulation results show that the proposed D2D DCM scheme outperforms other schemes in terms of the mean MUE capacity as the threshold of the SINR of MUEs incareases.

Machine Learning-based Detection of HTTP DoS Attacks for Cloud Web Applications (머신러닝 기반 클라우드 웹 애플리케이션 HTTP DoS 공격 탐지)

  • Jae Han Cho;Jae Min Park;Tae Hyeop Kim;Seung Wook Lee;Jiyeon Kim
    • Smart Media Journal
    • /
    • v.12 no.2
    • /
    • pp.66-75
    • /
    • 2023
  • Recently, the number of cloud web applications is increasing owing to the accelerated migration of enterprises and public sector information systems to the cloud. Traditional network attacks on cloud web applications are characterized by Denial of Service (DoS) attacks, which consume network resources with a large number of packets. However, HTTP DoS attacks, which consume application resources, are also increasing recently; as such, developing security technologies to prevent them is necessary. In particular, since low-bandwidth HTTP DoS attacks do not consume network resources, they are difficult to identify using traditional security solutions that monitor network metrics. In this paper, we propose a new detection model for detecting HTTP DoS attacks on cloud web applications by collecting the application metrics of web servers and learning them using machine learning. We collected 18 types of application metrics from an Apache web server and used five machine learning and two deep learning models to train the collected data. Further, we confirmed the superiority of the application metrics-based machine learning model by collecting and training 6 additional network metrics and comparing their performance with the proposed models. Among HTTP DoS attacks, we injected the RUDY and HULK attacks, which are low- and high-bandwidth attacks, respectively. As a result of detecting these two attacks using the proposed model, we found out that the F1 scores of the application metrics-based machine learning model were about 0.3 and 0.1 higher than that of the network metrics-based model, respectively.

RANS simulation of secondary flows in a low pressure turbine cascade: Influence of inlet boundary layer profile

  • Michele, Errante;Andrea, Ferrero;Francesco, Larocca
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.415-431
    • /
    • 2022
  • Secondary flows have a huge impact on losses generation in modern low pressure gas turbines (LPTs). At design point, the interaction of the blade profile with the end-wall boundary layer is responsible for up to 40% of total losses. Therefore, predicting accurately the end-wall flow field in a LPT is extremely important in the industrial design phase. Since the inlet boundary layer profile is one of the factors which most affects the evolution of secondary flows, the first main objective of the present work is to investigate the impact of two different inlet conditions on the end-wall flow field of the T106A, a well known LPT cascade. The first condition, labeled in the paper as C1, is represented by uniform conditions at the inlet plane and the second, C2, by a flow characterized by a defined inlet boundary layer profile. The code used for the simulations is based on the Discontinuous Galerkin (DG) formulation and solves the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the Spalart Allmaras turbulence model. Secondly, this work aims at estimating the influence of viscosity and turbulence on the T106A end-wall flow field. In order to do so, RANS results are compared with those obtained from an inviscid simulation with a prescribed inlet total pressure profile, which mimics a boundary layer. A comparison between C1 and C2 results highlights an influence of secondary flows on the flow field up to a significant distance from the end-wall. In particular, the C2 end-wall flow field appears to be characterized by greater over turning and under turning angles and higher total pressure losses. Furthermore, the C2 simulated flow field shows good agreement with experimental and numerical data available in literature. The C2 and inviscid Euler computed flow fields, although globally comparable, present evident differences. The cascade passage simulated with inviscid flow is mainly dominated by a single large and homogeneous vortex structure, less stretched in the spanwise direction and closer to the end-wall than vortical structures computed by compressible flow simulation. It is reasonable, then, asserting that for the chosen test case a great part of the secondary flows details is strongly dependent on viscous phenomena and turbulence.

Deep Learning Acoustic Non-line-of-Sight Object Detection (음향신호를 활용한 딥러닝 기반 비가시 영역 객체 탐지)

  • Ui-Hyeon Shin;Kwangsu Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.233-247
    • /
    • 2023
  • Recently, research on detecting objects in hidden spaces beyond the direct line-of-sight of observers has received attention. Most studies use optical equipment that utilizes the directional of light, but sound that has both diffraction and directional is also suitable for non-line-of-sight(NLOS) research. In this paper, we propose a novel method of detecting objects in non-line-of-sight (NLOS) areas using acoustic signals in the audible frequency range. We developed a deep learning model that extracts information from the NLOS area by inputting only acoustic signals and predicts the properties and location of hidden objects. Additionally, for the training and evaluation of the deep learning model, we collected data by varying the signal transmission and reception location for a total of 11 objects. We show that the deep learning model demonstrates outstanding performance in detecting objects in the NLOS area using acoustic signals. We observed that the performance decreases as the distance between the signal collection location and the reflecting wall, and the performance improves through the combination of signals collected from multiple locations. Finally, we propose the optimal conditions for detecting objects in the NLOS area using acoustic signals.

Improvement in Rice Cultural Techniques Against Unfavorable Weather Condition (기상재해와 수도재배상의 대책)

  • Ryu, I.S.;Lee, J.H.;Kwon, Y.W.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.385-397
    • /
    • 1982
  • The climatic impacts have been the environmental constraints with soil characteristics to achieve self sufficiency of food production in Korea. In this paper, the distribution and appearance of impacts and the changes in climatological status due to recent trend of early transplanting of rice are widely discussed to derive some countermeasures against the impacts, being focussed on cultural A long term analysis of the climatic impact appearances of the last 74 years showed that drought, strong wind, flood, cold spell and frost were the major impacts. Before 1970's, the drought damage was the greatest among the climatic impacts; however, the expansion and improvement of irrigation and drainage system markedly decreased the damage of drought and heavy rain. The appearance of cold damage became more frequent than before due to introduction of early transplanting for more thermophilic new varieties. Tongillines which were from Indica and Japonica crosses throw more attention to cold damage for high yields to secure high temperature in heading and ripening stages and lead weakness to cold and drought damage in early growth stage after transplanting. The plants became subject to heavy rain in ripening stage also. For the countermeasures against cold damage, the rational distribution of adequate varieties according to the regional climatic conditions and planting schedule should be imposed on the cultivation. A detoured water way to increase water temperature might be suggestable in the early growth stage. Heavy application of phosphate to boost rooting and tillering also would be a nutritional control method. In the heading and ripening stages, foliar application of phosphate and additional fertilization of silicate might be considerable way of nutritional control. Since the amount of solar radiation and air temperature in dry years were high, healthy plants for high yield could be obtained; therefere, the expansion of irrigation system and development of subsurface water should be performed as one of the national development projects. To minimize the damage of strong wind and rainfall, the rational distribution of varieties with different growing periods in the area where the damage occurred habitualy should be considered with installation of wind breaks. Not only vertical windbreaks but also a horizontal wind break using a net might be a possible way to decrease the white heads in rice field by dry wind. Finally, to establish the integrated countermeasures against the climatic impacts, the detailed interpretation on the regional climatic conditions should be conducted to understand distribution and frequency of the impacts. The expansion of observation net work for agricultural meteorology and development of analysis techniques for meteorological data must be conducted in future together with the development of the new cultural techniques.

  • PDF

Private Blockchain and Biometric Authentication-based Chronic Disease Management Telemedicine System for Smart Healthcare (스마트 헬스케어를 위한 프라이빗 블록체인과 생체인증기반의 만성질환관리 원격의료시스템)

  • Young-Ae Han;Hyeok Kang;Keun-Ho Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.33-39
    • /
    • 2023
  • As the number of people with chronic diseases increases due to an aging society, it is urgent to prevent and manage their diseases. Although biometric authentication methods and Telemedicine Systems have been introduced to solve these problems, it is difficult to solve the security problem of medical information and personal authentication. Since smart healthcare includes personal medical information of subjects, the security of personal information is the most important field. Therefore, in this paper, we tried to propose a Telemedicine System using a smart wearable device ECG in the form of a wristband and face personal authentication in a private blockchain environment. This system targets various medical personnel and patients with chronic diseases in all regions, and uses a private blockchain that can increase data integrity and transparency, ECG and face authentication that are difficult to forge and alter and have high personal identification to provide a system with high security and reliability. composed. Through this, it is intended to contribute to increasing the efficiency of chronic disease management by focusing on disease prevention and health management for patients with chronic diseases at home.

Estimation of Illuminant Chromaticity by Equivalent Distance Reference Illumination Map and Color Correlation (균등거리 기준 조명 맵과 색 상관성을 이용한 조명 색도 추정)

  • Kim Jeong Yeop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.6
    • /
    • pp.267-274
    • /
    • 2023
  • In this paper, a method for estimating the illuminant chromaticity of a scene for an input image is proposed. The illuminant chromaticity is estimated using the illuminant reference region. The conventional method uses a certain number of reference lighting information. By comparing the chromaticity distribution of pixels from the input image with the chromaticity set prepared in advance for the reference illuminant, the reference illuminant with the largest overlapping area is regarded as the scene illuminant for the corresponding input image. In the process of calculating the overlapping area, the weights for each reference light were applied in the form of a Gaussian distribution, but a clear standard for the variance value could not be presented. The proposed method extracts an independent reference chromaticity region from a given reference illuminant, calculates the characteristic values in the r-g chromaticity plane of the RGB color coordinate system for all pixels of the input image, and then calculates the independent chromaticity region and features from the input image. The similarity is evaluated and the illuminant with the highest similarity was estimated as the illuminant chromaticity component of the image. The performance of the proposed method was evaluated using the database image and showed an average of about 60% improvement compared to the conventional basic method and showed an improvement performance of around 53% compared to the conventional Gaussian weight of 0.1.