• Title/Summary/Keyword: Data Mining System

Search Result 1,310, Processing Time 0.024 seconds

Data Mining for Knowledge Management in a Health Insurance Domain

  • Chae, Young-Moon;Ho, Seung-Hee;Cho, Kyoung-Won;Lee, Dong-Ha;Ji, Sun-Ha
    • Journal of Intelligence and Information Systems
    • /
    • v.6 no.1
    • /
    • pp.73-82
    • /
    • 2000
  • This study examined the characteristicso f the knowledge discovery and data mining algorithms to demonstrate how they can be used to predict health outcomes and provide policy information for hypertension management using the Korea Medical Insurance Corporation database. Specifically this study validated the predictive power of data mining algorithms by comparing the performance of logistic regression and two decision tree algorithms CHAID (Chi-squared Automatic Interaction Detection) and C5.0 (a variant of C4.5) since logistic regression has assumed a major position in the healthcare field as a method for predicting or classifying health outcomes based on the specific characteristics of each individual case. This comparison was performed using the test set of 4,588 beneficiaries and the training set of 13,689 beneficiaries that were used to develop the models. On the contrary to the previous study CHAID algorithm performed better than logistic regression in predicting hypertension but C5.0 had the lowest predictive power. In addition CHAID algorithm and association rule also provided the segment characteristics for the risk factors that may be used in developing hypertension management programs. This showed that data mining approach can be a useful analytic tool for predicting and classifying health outcomes data.

  • PDF

Hybrid Type II fuzzy system & data mining approach for surface finish

  • Tseng, Tzu-Liang (Bill);Jiang, Fuhua;Kwon, Yongjin (James)
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.137-147
    • /
    • 2015
  • In this study, a new methodology in predicting a system output has been investigated by applying a data mining technique and a hybrid type II fuzzy system in CNC turning operations. The purpose was to generate a supplemental control function under the dynamic machining environment, where unforeseeable changes may occur frequently. Two different types of membership functions were developed for the fuzzy logic systems and also by combining the two types, a hybrid system was generated. Genetic algorithm was used for fuzzy adaptation in the control system. Fuzzy rules are automatically modified in the process of genetic algorithm training. The computational results showed that the hybrid system with a genetic adaptation generated a far better accuracy. The hybrid fuzzy system with genetic algorithm training demonstrated more effective prediction capability and a strong potential for the implementation into existing control functions.

RFM based Incremental Frequent Patterns mining Method for Recommendation in e-Commerce (전자상거래 추천을 위한 RFM기반의 점진적 빈발 패턴 마이닝 기법)

  • Cho, Young Sung;Moon, Song Chul;Ryu, Keun Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.135-137
    • /
    • 2012
  • A existing recommedation system using association rules has the problem, which is suffered from inefficiency by reprocessing of the data which have already been processed in the incremental data environment in which new data are added persistently. We propose the recommendation technique using incremental frequent pattern mining based on RFM in e-commerce. The proposed can extract frequent items and create association rules using frequent patterns mining rapidly when new data are added persistently.

  • PDF

Application of black box model for height prediction of the fractured zone in coal mining

  • Zhang, Shichuan;Li, Yangyang;Xu, Cuicui
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.997-1010
    • /
    • 2017
  • The black box model is a relatively new option for nonlinear dynamic system identification. It can be used for prediction problems just based on analyzing the input and output data without considering the changes of the internal structure. In this paper, a black box model was presented to solve unconstrained overlying strata movement problems in coal mine production. Based on the black box theory, the overlying strata regional system was viewed as a "black box", and the black box model on overburden strata movement was established. Then, the rock mechanical properties and the mining thickness and mined-out section area were selected as the subject and object respectively, and the influences of coal mining on the overburden regional system were discussed. Finally, a corrected method for height prediction of the fractured zone was obtained. According to actual mine geological conditions, the measured geological data were introduced into the black box model of overlying strata movement for height calculation, and the fractured zone height was determined as 40.36 m, which was comparable to the actual height value (43.91 m) of the fractured zone detected by Double-block Leak Hunting in Drill. By comparing the calculation result and actual surface subsidence value, it can be concluded that the proposed model is adaptable for height prediction of the fractured zone.

An Efficient Algorithm for Mining Frequent Sequences In Spatiotemporal Data

  • Vhan Vu Thi Hong;Chi Cheong-Hee;Ryu Keun-Ho
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.61-66
    • /
    • 2005
  • Spatiotemporal data mining represents the confluence of several fields including spatiotemporal databases, machine loaming, statistics, geographic visualization, and information theory. Exploration of spatial data mining and temporal data mining has received much attention independently in knowledge discovery in databases and data mining research community. In this paper, we introduce an algorithm Max_MOP for discovering moving sequences in mobile environment. Max_MOP mines only maximal frequent moving patterns. We exploit the characteristic of the problem domain, which is the spatiotemporal proximity between activities, to partition the spatiotemporal space. The task of finding moving sequences is to consider all temporally ordered combination of associations, which requires an intensive computation. However, exploiting the spatiotemporal proximity characteristic makes this task more cornputationally feasible. Our proposed technique is applicable to location-based services such as traffic service, tourist service, and location-aware advertising service.

  • PDF

Data Mining System in the Service Industry : Delphi Study

  • Hyun, Sung-Hyup;Huh, Jin;Hahm, Sung-Pil
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.10 no.4
    • /
    • pp.128-136
    • /
    • 2005
  • The use of technology is increasing within the service industry, but there is some doubt as to whether the benefits of employing this technology have been efficiently harnessed such as data mining. Data mining is the process of extracting certain predictive information from databases that can evolve from currently used restaurant management systems. The potential of harnessing this predictive information can have an enormous impact on the restaurant's operation on the whole, particularly in the area customer retention and competition. Since there is insufficient literature on the use of data mining in the restaurant industry, this study is both seminal and investigative, done via a Delphi survey to explore and describe the current and future applications of this process.

  • PDF

A Comparative Analysis for the knowledge of Data Mining Techniques with Experties (Data Mining 기법들과 전문가들로부터 추출된 지식에 관한 실증적 비교 연구)

  • 김광용;손광기;홍온선
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.1
    • /
    • pp.41-58
    • /
    • 1998
  • 본 연구는 여러 가지 Data Mining 기법들로부터 도출된 지식과 AHP를 이용하여 도출된 전문가의 지식을 사용된 정보의 특성에 따라 조사하고, 이러한 각각의 지식들을 중심으로 부도예측 모형을 설계한 후, 각 모형의 특성 및 부도예측력에 대한 실증적 비교연구에 그 목적을 두고 있다. 사용된 Data Mining 기법들은 통계적 다중판별분석 모형, ID3 모형, 인공신경망 모형이며, 전문가 지식의 추출은 AHP를 사용하여 45명의 전문가로부터 부도와 관련하여 인터뷰 및 설문조사를 실시하였다. 특히 부도예측에 사용된 변수의 특성을 정량적 재무정보와 정성적 비재무정보로 나누어서 각 모형의 특성을 비교연구하였다. 연구결과 부도예측시 정성적정보의 중요성을 확인하였으며, 전문가의 지식을 기반으로한 AHP 모형이 위험예측모형으로 사용될 수 있음을 실증적으로 보여주었다.

  • PDF

Integrated Corporate Bankruptcy Prediction Model Using Genetic Algorithms (유전자 알고리즘 기반의 기업부실예측 통합모형)

  • Ok, Joong-Kyung;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.99-121
    • /
    • 2009
  • Recently, there have been many studies that predict corporate bankruptcy using data mining techniques. Although various data mining techniques have been investigated, some researchers have tried to combine the results of each data mining technique in order to improve classification performance. In this study, we classify 4 types of data mining techniques via their characteristics and select representative techniques of each type then combine them using a genetic algorithm. The genetic algorithm may find optimal or near-optimal solution because it is a global optimization technique. This study compares the results of single models, typical combination models, and the proposed integration model using the genetic algorithm.

  • PDF

A Study on Constructing the Prediction System Using Data Mining Techniques to Find Medium-Voltage Customers Causing Distribution Line Faults (특별고압 수전설비 관리에 데이터 마이닝 기법을 적용한 파급고장 발생가능고객 예측시스템 구현 연구)

  • Bae, Sung-Hwan;Kim, Ja-Hee;Lim, Han-Seung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2453-2461
    • /
    • 2009
  • Faults caused by medium-voltage customers have been increased and enlarged their portion in total distribution faults even though we have done many efforts. In the previous paper, we suggested the fault prediction model and fault prevention method for these distribution line faults. However we can't directly apply this prediction model in the field. Because we don't have an useful program to predict those customers causing distribution line faults. This paper presents the construction method of data warehouse in ERP system and the program to find customers who cause distribution line faults in medium-voltage customer's electric facility management applying data mining techniques. We expect that this data warehouse and prediction program can effectively reduce faults resulted from medium-voltage customer facility.

An Evaluation of the Suitability of Data Mining Algorithms for Smart-Home Intelligent-Service Platforms (스마트홈 지능형 서비스 플랫폼을 위한 데이터 마이닝 기법에 대한 적합도 평가)

  • Kim, Kilhwan;Keum, Changsup;Chung, Ki-Sook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.68-77
    • /
    • 2017
  • In order to implement the smart home environment, we need an intelligence service platform that learns the user's life style and behavioral patterns, and recommends appropriate services to the user. The intelligence service platform should embed a couple of effective and efficient data mining algorithms for learning from the data that is gathered from the smart home environment. In this study, we evaluate the suitability of data mining algorithms for smart home intelligent service platforms. In order to do this, we first develop an intelligent service scenario for smart home environment, which is utilized to derive functional and technical requirements for data mining algorithms that is equipped in the smart home intelligent service platform. We then evaluate the suitability of several data mining algorithms by employing the analytic hierarchy process technique. Applying the analytical hierarchy process technique, we first score the importance of functional and technical requirements through a hierarchical structure of pairwise comparisons made by experts, and then assess the suitability of data mining algorithms for each functional and technical requirements. There are several studies for smart home service and platforms, but most of the study have focused on a certain smart home service or a certain service platform implementation. In this study, we focus on the general requirements and suitability of data mining algorithms themselves that are equipped in smart home intelligent service platform. As a result, we provide a general guideline to choose appropriate data mining techniques when building a smart home intelligent service platform.