• 제목/요약/키워드: Data Mining Process

검색결과 681건 처리시간 0.025초

대규모 궤적 데이타를 위한 데이타 마이닝 툴 (A Data Mining Tool for Massive Trajectory Data)

  • 이재길
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권3호
    • /
    • pp.145-153
    • /
    • 2009
  • 궤적(trajectory) 데이타는 실세계 어디에서든지 쉽게 찾아볼 수 있다. 최근 들어, 위성, 센서, RFID, 비디오 및 무선 통신 기술의 발전으로 말미암아 이동 객체를 체계적으로 추적하고, 많은 양의 궤적데이타를 수집할 수 있게 되었다. 이에 따라, 궤적 데이타의 분석에 대한 필요성이 점차 증대되고 있다. 본 논문에서는 대규모 궤적 데이타를 위한 마이닝 툴을 개발한다. 본 마이닝 툴에서는 가장 널리 사용되는 마이닝 연산인 집단화(clustering), 분류(classification), 이상치 발견(outlier detection)을 제공한다. 궤적 집단화는 공통적인 이동 패턴을 발견하며, 궤적 분류는 궤적에 기반하여 이동 객체의 범주를 예측하며, 궤적 이상치 발견은 나머지 궤적들과 크게 다르거나 일관적이지 않은 궤적을 발견한다. 본 마이닝 툴의 가장 큰 장점은 데이타 마이닝 도중에 부분 궤적 정보를 활용한다는 점이다. 본 마이닝 툴의 우수성은 다양한 실제 궤적 데이타 셋을 사용하여 입증되었다. 본 논문의 결과로 궤적 데이타 마이닝을 위한 실용적인 소프트웨어를 개발하였고 많은 실제 응용에 적용될 수 있을 것이라 사료된다.

e-Business에서의 BI지원 데이타마이닝 시스템 (A Data Mining System for Supporting of Business Intelligence in e-Business)

  • 이준욱;백옥현;류근호
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권5호
    • /
    • pp.489-500
    • /
    • 2002
  • 비즈니스 인텔리젼스에 대한 관심이 증대되면서 핵심 기술로써 데이타마이닝의 적용이 증대되고 있다. e-Business에서의 비즈니스 인텔리젼스를 지원하기 위해 다양한 마이닝 연산을 통합적으로 제공하는 마이닝 시스템은 데이타베이스 시스템과 유연하게 통합될 수 있어야 하며, 또한 다양한 비즈니스 응용에서의 마케팅 프로세스를 쉽게 구현할 수 있는 인터페이스를 제공하여야 한다. 이 연구에서는 e-Business영역에서의 BI를 지원하기 위해 데이타마이닝 기법을 통합적으로 제공하는 시스템으로써 EC-DaMiner 시스템을 설계, 구현하였다. 데이타마이닝 시스템은 기존의 데이타베이스 시스템과의 표준적인 인터페이스를 통하여 연동될 수 있도록 하였다. 아울러 비즈니스 어플리케이션들은 마이닝 질의어인 MQL을 통하여 규칙을 탐사하고 탐사된 규칙을 기존의 마케팅 데이타베이스에 모델화하여 반영함으로써 마케팅 전략의 구현을 용이하게 하였다.

퍼지 성능 측정자를 이용한 적응 데이터 마이닝 모델 (Adaptive Data Mining Model using Fuzzy Performance Measures)

  • 이현숙
    • 정보처리학회논문지B
    • /
    • 제13B권5호
    • /
    • pp.541-546
    • /
    • 2006
  • 데이터 마이닝은 방대한 양의 데이터를 다루는 응용영역에서 학습과 함께 연구되어 실세계의 문제를 해결할 수 있는 구체적인 방법을 제시해 주고 있다. 데이터 마이닝을 위한 보편적인 방법으로 사용되어 온 클러스터 분석 방법은 데이터의 양이 많아질수록, 실세계에서 직접 얻은 데이터일수록 경계가 불분명하고 처리과정에서 많은 오차가 발생하게 되어 직접 적용하고자할 때 고려해야할 점이 많다. 이를 위하여 퍼지 개념이 도입된 퍼지 클러스터링 방법론은 클러스터 타당성문제와 함께 널리 연구되어왔다. 본 논문에서는 클러스터링의 결과가 만들어 내는 오류 값을 최소화하는 방향으로 학습하는 비교사 학습신경망에 의하여 클러스터링이 이루어지고 이를 퍼지 성능 측정자에 의하여 평가하면서 최적의 클러스터 수를 찾아가는 적응형 데이터 마이닝 모델을 제안하고자 한다 또한 뉴스그룹의 텍스트 데이터를 처리하여 문서분류에 활용할 수 있음을 보임으로 제안된 모델의 타당성을 확인하고자 한다.

Data Mining Approach Using Practical Swarm Optimization (PSO) to Predicting Going Concern: Evidence from Iranian Companies

  • Salehi, Mahdi;Fard, Fezeh Zahedi
    • 유통과학연구
    • /
    • 제11권3호
    • /
    • pp.5-11
    • /
    • 2013
  • Purpose - Going concern is one of fundamental concepts in accounting and auditing and sometimes the assessment of a company's going concern status that is a tough process. Various going concern prediction models' based on statistical and data mining methods help auditors and stakeholders suggested in the previous literature. Research design - This paper employs a data mining approach to prediction of going concern status of Iranian firms listed in Tehran Stock Exchange using Particle Swarm Optimization. To reach this goal, at the first step, we used the stepwise discriminant analysis it is selected the final variables from among of 42 variables and in the second stage; we applied a grid-search technique using 10-fold cross-validation to find out the optimal model. Results - The empirical tests show that the particle swarm optimization (PSO) model reached 99.92% and 99.28% accuracy rates for training and holdout data. Conclusions - The authors conclude that PSO model is applicable for prediction going concern of Iranian listed companies.

  • PDF

데이터마이닝을 이용한 국민연금 부정수급 예측모형 개발 - 손해배상금 불성실 신고를 대상으로 - (An Application of Data-Mining Tool in Fraud Pension Payment Prediction)

  • 차경엽
    • Communications for Statistical Applications and Methods
    • /
    • 제17권1호
    • /
    • pp.1-8
    • /
    • 2010
  • 최근 사회복지분야에서 부정수급, 횡령 등이 빈번히 발생함에 따라 비리를 방지하기 위한 체계적인 관리 방안이 요구되고 있다. 데이터마이닝은 다수의 이해관계자와 많은 예산이 투입되는 사업을 관리하는데 효과적인 방법이다. 본 연구는 국민연금의 부정 수급자 관리방안으로 데이터마이닝을 이용한 예측모형을 개발하였다. 분석결과, 수급자의 급여, 연금 가입, 사고내역 정보가 부정수급의 특성 요인으로 나타났으며 이를 의사결정나무 모형, 로지스틱 회귀모형, 인공신경망 모형에 적용한 결과 의사결정나무 모형의 예측력이 가장 우수한 것으로 분석되었다.

Odoo Data Mining Module Using Market Basket Analysis

  • Yulia, Yulia;Budhi, Gregorius Satia;Hendratha, Stefani Natalia
    • Journal of information and communication convergence engineering
    • /
    • 제16권1호
    • /
    • pp.52-59
    • /
    • 2018
  • Odoo is an enterprise resource planning information system providing modules to support the basic business function in companies. This research will look into the development of an additional module at Odoo. This module is a data mining module using Market Basket Analysis (MBA) using FP-Growth algorithm in managing OLTP of sales transaction to be useful information for users to improve the analysis of company business strategy. The FP-Growth algorithm used in the application was able to produce multidimensional association rules. The company will know more about their sales and customers' buying habits. Performing sales trend analysis will give a valuable insight into the inner-workings of the business. The testing of the module is using the data from X Supermarket. The final result of this module is generated from a data mining process in the form of association rule. The rule is presented in narrative and graphical form to be understood easier.

의사결정 규칙을 이용한 데이터 통합에 관한 연구 (A Study on the Data Fusion Method using Decision Rule for Data Enrichment)

  • 김순영;정성석
    • 응용통계연구
    • /
    • 제19권2호
    • /
    • pp.291-303
    • /
    • 2006
  • 대용량의 데이터로부터 의미있는 지식을 찾는 과정에서 데이터의 질은 무엇보다도 중요하다. 본 연구에서는 데이터의 충실도를 높이기 위한 방법으로 여러 경로로부터 수집된 데이터의 정보를 활용하기 위해 데이터 마이닝 알고리즘인 의사결정 규칙을 이용한 데이터 통합 기법을 제안하고, 실제 데이터를 이용하여 모의실험을 통해 제안된 알고리즘의 효율성을 비교하였다. 실험결과 제안된 알고리즘이 데이터 통합의 성능을 향상시킴을 알 수 있었다.

스마트 공장에서 의사결정 모델을 이용한 순차 마이닝 기반 제조공정 (Sequence Mining based Manufacturing Process using Decision Model in Cognitive Factory)

  • 김주창;정호일;유현;정경용
    • 한국융합학회논문지
    • /
    • 제9권3호
    • /
    • pp.53-59
    • /
    • 2018
  • 본 논문에서는 스마트 공장에서 의사결정 모델을 이용한 순차 마이닝 기반 제조공정을 제안한다. 제안하는 모델은 소규모의 제조공정에서 순차 마이닝 의사결정 모델을 적용하여 제조 효율을 높이는 방법이다. 제조 단계 중 제품 제조 과정에서 나타나는 데이터를 입력 변수들로 구성하고, 시간당 제조량과 불량률을 출력 변수로 구성한다. t-검정을 통해 유의수준이 높은 변수만을 사용하여 GSP 알고리즘과 REPTree 알고리즘을 이용한 규칙과 모델을 생성한다. 의미있는 순차 규칙과 의사결정 모델은 정확도, 민감도, 특이성, 예측도를 통해 유의미함을 확인한다. 결과적으로, 실제 제조에 적용한 결과 불량률은 0.38%가 개선되었고, 시간당 제조량은 평균 1.89/h 증가되었다. 이는 소규모 제조 공정에서 데이터 마이닝 분석을 통한 제조 효율을 높이기 위한 의미있는 결과를 나타낸다.

EDF: An Interactive Tool for Event Log Generation for Enabling Process Mining in Small and Medium-sized Enterprises

  • Frans Prathama;Seokrae Won;Iq Reviessay Pulshashi;Riska Asriana Sutrisnowati
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권6호
    • /
    • pp.101-112
    • /
    • 2024
  • 본 논문에서는 프로세스 마이닝을 위한 이벤트 로그 생성을 지원하도록 설계된 대화형 도구인 EDF(Event Data Factory)를 소개한다. EDF는 다양한 데이터 커넥터를 통합하여 사용자가 다양한 데이터 소스에 연결할 수 있도록 지원한다. 이 도구는 그래프 기반 시각화와 함께 로우 코드/노코드 기술을 사용하여 비전문가 사용자가 프로세스 흐름을 이해하도록 돕고, 사용자 경험을 향상시킨다. EDF는 메타데이터 정보를 활용하여 사용자가 case, activity 및 timestamp 속성을 포함하는 이벤트 로그를 효율적으로 생성할 수 있도록 한다. 로그 품질 메트릭을 통해 사용자는 생성된 이벤트 로그의 품질을 평가할 수 있다. 우리는 클라우드 기반 아키텍처에서 EDF를 구현하고 성능평가를 실행했으며, 본 연구와 결과는 EDF의 사용성과 적용 가능성을 보여주었다. 마지막으로 관찰 연구를 통해 EDF가 사용하기 쉽고 유용하여 프로세스 마이닝 애플리케이션에 대한 중소기업(SME)의 접근을 확장한다는 사실을 확인했다.

지능형 에이전트를 이용한 자동협상전략 수립 시스템 (An Automated Negotiation System Using Intelligent Agents)

  • 박세진;권익현;신현준
    • 산업경영시스템학회지
    • /
    • 제29권2호
    • /
    • pp.20-30
    • /
    • 2006
  • Due to recent growing interest in autonomous software agents and their potential application in areas such as electronic commerce, the autonomous negotiation become more important. Evidence from both theoretical analysis and observations of human interactions suggests that if decision makers have prior information on opponents and furthermore learn the behaviors of other agents from interaction, the overall payoff would increase. We propose a new methodology for a strategy finding process using data mining in autonomous negotiation system; ANSIA(Autonomous Negotiation System using Intelligent Agent). ANSIA is a strategy based negotiation system. The framework of ANSIA consists of three component layers; 1) search agent layer, 2) data mining agent layer and 3) negotiation agent layer. ANSIA is motivated by providing a computational framework for negotiation and by defining a strategy finding model with an autonomous negotiation process.