• 제목/요약/키워드: Data Inference

검색결과 1,310건 처리시간 0.037초

Prediction of User's Preference by using Fuzzy Rule & RDB Inference: A Cosmetic Brand Selection

  • Kim, Jin-Sung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권4호
    • /
    • pp.353-359
    • /
    • 2005
  • In this research, we propose a Unified Fuzzy rule-based knowledge Inference Systems (UFIS) to help the expert in cosmetic brand detection. Users' preferred cosmetic product detection is very important in the level of CRM. To this purpose, many corporations trying to develop an efficient data mining tool. In this study, we develop a prototype fuzzy rule detection and inference system. The framework used in this development is mainly based on two different mechanisms such as fuzzy rule extraction and RDB (Relational DB)-based fuzzy rule inference. First, fuzzy clustering and fuzzy rule extraction deal with the presence of the knowledge in data base and its value is presented with a value between 0 -1. Second, RDB and SQL (Structured Query Language)-based fuzzy rule inference mechanism provide more flexibility in knowledge management than conventional non-fuzzy value-based KMS (Knowledge Management Systems).

GMDH 알고리즘과 다항식 퍼지추론에 기초한 퍼지 다항식 뉴럴 네트워크 (Fuzzy Polynomial Neural Networks based on GMDH algorithm and Polynomial Fuzzy Inference)

  • 박호성;윤기찬;오성권
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.130-133
    • /
    • 2000
  • In this paper, a new design methodology named FNNN(Fuzzy Polynomial Neural Network) algorithm is proposed to identify the structure and parameters of fuzzy model using PNN(Polynomial Neural Network) structure and a fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Handling), and uses several types of polynomials such as linear, quadratic and modified quadratic besides the biquadratic polynomial used in the GMDH. The premise of fuzzy inference rules defines by triangular and gaussian type membership function. The fuzzy inference method uses simplified and regression polynomial inference method which is based on the consequence of fuzzy rule expressed with a polynomial such as linear, quadratic and modified quadratic equation are used. Each node of the FPNN is defined as fuzzy rules and its structure is a kind of neuro-fuzzy architecture Several numerical example are used to evaluate the performance of out proposed model. Also we used the training data and testing data set to obtain a balance between the approximation and generalization of proposed model.

  • PDF

인메모리 기반 병렬 컴퓨팅 그래프 구조를 이용한 대용량 RDFS 추론 (Scalable RDFS Reasoning Using the Graph Structure of In-Memory based Parallel Computing)

  • 전명중;소치승;바트셀렘;김강필;김진;홍진영;박영택
    • 정보과학회 논문지
    • /
    • 제42권8호
    • /
    • pp.998-1009
    • /
    • 2015
  • 근래에 들어 풍부한 지식베이스를 구축하기 위한 대용량 RDFS 추론에 대한 관심이 높아지면서 기존의 단일 머신으로는 대용량 데이터의 추론 성능을 향상시키기에 한계가 있다. 그래서 분산 환경에서 의 RDFS 추론 엔진 개발이 활발히 연구되고 있다. 하지만 기존의 분산 환경 엔진은 실시간 처리가 불가능 하며 구현이 어렵고 반복 작업에 취약하다. 본 논문에서는 이러한 문제를 극복하기 위해 병렬 그래프 구조 를 사용한 인-메모리 분산 추론 엔진 구축 방법을 제안한다. 트리플 형태의 온톨로지는 기본적으로 그래프 구조를 가지고 있으므로 그래프 구조 기반의 추론 엔진을 설계하는 것이 직관적이다. 또한 그래프 구조를 활용하는 오퍼레이터를 활용하여 RDFS 추론 규칙을 구현함으로써 기존의 데이터 관점과 달리 그래프 구조의 관점에서 설계할 수 있다. 본 논문에서 제안한 추론 엔진을 평가하기 위해 LUBM1000(1억 3천 3백만 트리플, 17.9GB), LUBM3000(4억 1천 3백만 트리플, 54.3GB)에 대해 추론 속도를 실험을 하였으며 실 험결과, 비-인메모리 분산 추론 엔진보다 약 10배 정도 빠른 추론 성능을 보였다.

Multiple Instance Mamdani Fuzzy Inference

  • Khalifa, Amine B.;Frigui, Hichem
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권4호
    • /
    • pp.217-231
    • /
    • 2015
  • A novel fuzzy learning framework that employs fuzzy inference to solve the problem of Multiple Instance Learning (MIL) is presented. The framework introduces a new class of fuzzy inference systems called Multiple Instance Mamdani Fuzzy Inference Systems (MI-Mamdani). In multiple instance problems, the training data is ambiguously labeled. Instances are grouped into bags, labels of bags are known but not those of individual instances. MIL deals with learning a classifier at the bag level. Over the years, many solutions to this problem have been proposed. However, no MIL formulation employing fuzzy inference exists in the literature. Fuzzy logic is powerful at modeling knowledge uncertainty and measurements imprecision. It is one of the best frameworks to model vagueness. However, in addition to uncertainty and imprecision, there is a third vagueness concept that fuzzy logic does not address quiet well, yet. This vagueness concept is due to the ambiguity that arises when the data have multiple forms of expression, this is the case for multiple instance problems. In this paper, we introduce multiple instance fuzzy logic that enables fuzzy reasoning with bags of instances. Accordingly, a MI-Mamdani that extends the standard Mamdani inference system to compute with multiple instances is introduced. The proposed framework is tested and validated using a synthetic dataset suitable for MIL problems. Additionally, we apply the proposed multiple instance inference to fuse the output of multiple discrimination algorithms for the purpose of landmine detection using Ground Penetrating Radar.

Bearing Fault Diagnosis Using Fuzzy Inference Optimized by Neural Network and Genetic Algorithm

  • Lee, Hong-Hee;Nguyen, Ngoc-Tu;Kwon, Jeong-Min
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권3호
    • /
    • pp.353-357
    • /
    • 2007
  • The bearing diagnostics method is presented in this paper using fuzzy inference based on vibration data. Both time-domain and frequency-domain features are used as input data for bearing fault detection. The Adaptive Network based Fuzzy Inference System (ANFIS) and Genetic Algorithm (GA) have been proposed to select the fuzzy model input and output parameters. Training results give the optimized fuzzy inference system for bearing diagnosis based on measured vibration data. The result is also tested with other sets of bearing data to illustrate the reliability of the chosen model.

Multi-Sensor Data Fusion Model that Uses a B-Spline Fuzzy Inference System

  • Lee, K.S.;S.W. Shin;D.S. Ahn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.23.3-23
    • /
    • 2001
  • The main object of this work is the development of an intelligent multi-sensor integration and fusion model that uses fuzzy inference system. Sensor data from different types of sensors are integrated and fused together based on the confidence which is not typically used in traditional data fusion methods. The information is fed as input to a fuzzy inference system(FIS). The output of the FIS is weights that are assigned to the different sensor data reflecting the confidence En the sensor´s behavior and performance. We interpret a type of fuzzy inference system as an interpolator of B-spline hypersurfaces. B-spline basis functions of different orders are regarded as a class of membership functions. This paper presents a model that ...

  • PDF

A Development of Forward Inference Engine and Expert Systems based on Relational Database and SQL

  • Kim, Jin-Sung
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 추계 학술대회 학술발표 논문집
    • /
    • pp.49-52
    • /
    • 2003
  • In this research, we propose a mechanism to develop an inference engine and expert systems based on relational database and SQL (structured query language). Generally, former researchers had tried to develop an expert systems based on text-oriented knowledge base and backward/forward (chaining) inference engine. In these researches, however, the speed of inference was remained as a tackling point in the development of agile expert systems. Especially, the forward inference needs more times than backward inference. In addition, the size of knowledge base, complicate knowledge expression method, expansibility of knowledge base, and hierarchies among rules are the critical limitations to develop an expert systems. To overcome the limitations in speed of inference and expansibility of knowledge base, we proposed a relational database-oriented knowledge base and forward inference engine. Therefore, our proposed mechanism could manipulate the huge size of knowledge base efficiently, and inference with the large scaled knowledge base in a short time. To this purpose, we designed and developed an SQL-based forward inference engine using relational database. In the implementation process, we also developed a prototype expert system and presented a real-world validation data set collected from medical diagnosis field.

  • PDF

RDB-based Automatic Knowledge Acquisition and Forward Inference Mechanism for Self-Evolving Expert Systems

  • Kim, Jin-Sung
    • 한국지능시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.743-748
    • /
    • 2003
  • In this research, we propose a mechanism to develop an inference engine and expert systems based on relational database (RDB) and SQL (structured query language). Generally, former researchers had tried to develop an expert systems based on text-oriented knowledge base and backward/forward (chaining) inference engine. In these researches, however, the speed of inference was remained as a tackling point in the development of agile expert systems. Especially, the forward inference needs more times than backward inference. In addition, the size of knowledge base, complicate knowledge expression method, expansibility of knowledge base, and hierarchies among rules are the critical limitations to develop an expert system. To overcome the limitations in speed of inference and expansibility of knowledge base, we proposed a relational database-oriented knowledge base and forward inference engine. Therefore, our proposed mechanism could manipulate the huge size of knowledge base efficiently. and inference with the large scaled knowledge base in a short time. To this purpose, we designed and developed an SQL-based forward inference engine using relational database. In the implementation process, we also developed a prototype expert system and presented a real-world validation data set collected from medical diagnosis field.

수정된 GMDH 알고리즘 기반 다층 퍼지 추론 시스템에 관한 연구 (A Study on Multi-layer Fuzzy Inference System based on a Modified GMDH Algorithm)

  • 박병준;박춘성;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.675-677
    • /
    • 1998
  • In this paper, we propose the fuzzy inference algorithm with multi-layer structure. MFIS(Multi-layer Fuzzy Inference System) uses PNN(Polynomial Neural networks) structure and the fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Hendling), and uses several types of polynomials such as linear, quadratic and cubic, as well as the biquadratic polynomial used in the GMDH. In the fuzzy inference method, the simplified and regression polynomial inference methods are used. Here, the regression polynomial inference is based on consequence of fuzzy rules with the polynomial equations such as linear, quadratic and cubic equation. Each node of the MFIS is defined as fuzzy rules and its structure is a kind of neuro-fuzzy structure. We use the training and testing data set to obtain a balance between the approximation and the generalization of process model. Several numerical examples are used to evaluate the performance of the our proposed model.

  • PDF

다중센서 데이터융합 기반 상황추론에서 시간경과를 고려한 클러스터링 기법 (A Novel Clustering Method with Time Interval for Context Inference based on the Multi-sensor Data Fusion)

  • 유창근;박찬봉
    • 한국전자통신학회논문지
    • /
    • 제8권3호
    • /
    • pp.397-402
    • /
    • 2013
  • 다중센서를 이용한 상황인식에서 시간변화는 고려해야 하는 요소이다. 센서가 감지하여 보고한 정보를 바탕으로 상황추론에 도달하고자 하는 경우, 일정 시간 간격별로 묶어서 검토하는 것이 유용하다. 본 논문에서는 시간경과를 고려하는 클러스터링 기법을 이용한 다중센서 데이터융합을 제안한다. 각 센서별로 일정시간 간격동안 수집되어 보고된 센싱 정보를 묶어 1차 데이터융합을 실시하고 그 결과를 대상으로 다시 2차 데이터융합을 실시하였다. Dempster-Shafer이론을 이용하여 다중센서 데이터융합을 실시하고 그 결과를 분석하여 상황을 추론하는데 시간간격을 기준으로 세분화시켜 평가하고 이것을 다시 융합함으로써 향상된 상황 정보를 추론할 수 있다.