• Title/Summary/Keyword: Data Inference

Search Result 1,332, Processing Time 0.036 seconds

An Analysis on Prediction of Computer Entertainment Behavior Using Bayesian Inference (베이지안 추론을 이용한 컴퓨터 오락추구 행동 예측 분석)

  • Lee, HyeJoo;Jung, EuiHyun
    • The Journal of Korean Association of Computer Education
    • /
    • v.21 no.3
    • /
    • pp.51-58
    • /
    • 2018
  • In order to analyze the prediction of the computer entertainment behavior, this study investigated the variables' interdependencies and their causal relations to the computer entertainment behavior using Bayesian inference with the Korean Children and Youth Panel Survey data. For the study, Markov blanket was extracted through General Bayesian Network and the degree of influences was investigated by changing the variables' probabilities. Results showed that the computer entertainment behavior was significantly changed depending on adjusting the values of the related variables; school learning act, smoking, taunting, fandom, and school rule. The results suggested that the Bayesian inference could be used in educational filed for predicting and adjusting the adolescents' computer entertainment behavior.

A Study on the Fault Discrimination and Location Algorithm in Underground Transmission Systems Using Wavelet Transform and Fuzzy Inference (지중송전계통에서 Wavelet 변환과 퍼지추론을 이용한 고장종류판별 및 고장점 추정에 관한 연구)

  • Park, Jae-Hong;Lee, Jong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.3
    • /
    • pp.116-122
    • /
    • 2006
  • The underground transmission lines is continuously expanded in power systems. Therefore the fault of underground transmission lines are increased every year because of the complication of systems. However the studies dealing with fault location in the case of the underground transmission lines are rarely reported except for few papers using traveling wave method and calculating underground cable impedance. This paper describes the algorithm using fuzzy system and travelling wave method in the underground transmission line. Fuzzy inference is used for fault discrimination. To organize fuzzy algorithm, it is important to select target data reflecting various underground transmission line transient states. These data are made of voltage and average of RMS value on zero sequence current within one cycle after fault occurrence. Travelling wave based on wavelet transform is used for fault location. In this paper, a variety of underground transmission line transient states are simulated by EMTP/ATPDraw and Matlab. The input which is used to fault location algorithm are Detail 1(D1) coefficients of differential current. D1 coefficients are obtained by wavelet transform. As a result of applying the fuzzy inference and travelling wave based on wavelet transform, fault discrimination is correctly distinguished within 1/2 cycle after fault occurrence and fault location is comparatively correct.

Medical Diagnosis Inference using Neural Network and Discriminant Analyses

  • Chang, Duk-Joon;Kwon, Yong-Man
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.2
    • /
    • pp.511-518
    • /
    • 2008
  • Medical diagnosis systems have been developed to make the knowledge and expertise of human experts more widely available, therefore achieving high-quality diagnosis. In this study, in order to support the diagnosis by the medical diagnosis system, we have preformed medical diagnosis inference three times: first by a neural network with the backpropagation algorithm, secondly by a discriminant analysis with all of the variables, and thirdly by a discriminant analysis with the selected variables. A discussion on comparison of these three methods has been provided.

  • PDF

A study on nonlinear data-based modeling using fuzzy neural networks (퍼지신경망을 이용한 비선형 데이터 모델링에 관한 연구)

  • Kwon, Oh-Gook;Jang, Wook;Joo, Young-Hoon;Choi, Yoon-Ho;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.120-123
    • /
    • 1997
  • This paper presents models of fuzzy inference systems that can be built from a set of input-output training data pairs through hybrid structure-parameter learning. Fuzzy inference systems has the difficulty of parameter learning. Here we develop a coding format to determine a fuzzy neural network(FNN) model by chromosome in a genetic algorithm(GA) and present systematic approach to identify the parameters and structure of FNN. The proposed FNN can automatically identify the fuzzy rules and tune the membership functions by modifying the connection weights of the networks using the GA and the back-propagation learning algorithm. In order to show effectiveness of it we simulate and compare with conventional methods.

  • PDF

Likelihood Based Inference for the Shape Parameter of the Inverse Gaussian Distribution

  • Lee, Woo-Dong;Kang, Sang-Gil;Kim, Dong-Seok
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.5
    • /
    • pp.655-666
    • /
    • 2008
  • Small sample likelihood based inference for the shape parameter of the inverse Gaussian distribution is the purpose of this paper. When shape parameter is of interest, the signed log-likelihood ratio statistic and the modified signed log-likelihood ratio statistic are derived. Hsieh (1990) gave a statistical inference for the shape parameter based on an exact method. Throughout simulation, we will compare the statistical properties of the proposed statistics to the statistic given by Hsieh (1990) in term of confidence interval and power of test. We also discuss a real data example.

High-speed Fuzzy Inference System in Integrated GUI Environment

  • Lee, Sang-Gu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.50-55
    • /
    • 2004
  • We propose an intgrated Gill environment system having only integer fuzzy operations in the consequent part and the defuzzification stage. In this paper, we also propose an integrated Gill environment system with 4 parallel fuzzy processing units to be operated in parallel on the classification of the sensed image data. In this, we solve the problems of taking longer times as the fuzzy real computations of [0, 1] by using the integer pixel conversion algorithm to convert lines of each fuzzy linguistic term to the closest integer pixels. This procedure is performed automatically in the GUI application program. As a Gill environment, PCI transmission, image data pre-processing, integer pixel mapping and fuzzy membership tuning are considered. This system can be operated in parallel manner for MIMO or MISO systems.

Determination of dosing rate for water treatment using fusion of genetic algorithms and fuzzy inference system (유전알고리즘과 퍼지추론시스템의 합성을 이용한 정수처리공정의 약품주입률 결정)

  • 김용열;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.952-955
    • /
    • 1996
  • It is difficult to determine the feeding rate of coagulant in water treatment process, due to nonlinearity, multivariables and slow response characteristics etc. To deal with this difficulty, the fusion of genetic algorithms and fuzzy inference system was used in determining of feeding rate of coagulant. The genetic algorithms are excellently robust in complex operation problems, since it uses randomized operators and searches for the best chromosome without auxiliary information from a population consists of codings of parameter set. To apply this algorithms, we made the look up table and membership function from the actual operation data of water treatment process. We determined optimum dosages of coagulant (PAC, LAS etc.) by the fuzzy operation, and compared it with the feeding rate of the actual operation data.

  • PDF

(On designing Temperature Control System of the Air-conditioner using immune system) (면역 시스템을 이용한 에어콘의 온도 제어 시스템 설계)

  • Seo, Jae-Yong;Jo, Hyeon-Chan;Jeon, Hong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • In this paper, we propose temperature inference system for indoor and outdoor temperature of the Air-Conditioner with limited sensors. The proposed system based on the network theory of biological immune system consists of indoor and outdoor temperature inference process. It is designed that on-line temperature inference is possible. This system is admirable for unlearned data as well as given input data by making efficient use of previous information.

Robust inference with order constraint in microarray study

  • Kang, Joonsung
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.5
    • /
    • pp.559-568
    • /
    • 2018
  • Gene classification can involve complex order-restricted inference. Examining gene expression pattern across groups with order-restriction makes standard statistical inference ineffective and thus, requires different methods. For this problem, Roy's union-intersection principle has some merit. The M-estimator adjusting for outlier arrays in a microarray study produces a robust test statistic with distribution-insensitive clustering of genes. The M-estimator in conjunction with a union-intersection principle provides a nonstandard robust procedure. By exact permutation distribution theory, a conditionally distribution-free test based on the proposed test statistic generates corresponding p-values in a small sample size setup. We apply a false discovery rate (FDR) as a multiple testing procedure to p-values in simulated data and real microarray data. FDR procedure for proposed test statistics controls the FDR at all levels of ${\alpha}$ and ${\pi}_0$ (the proportion of true null); however, the FDR procedure for test statistics based upon normal theory (ANOVA) fails to control FDR.

Fuzzy Inference in RDB using Fuzzy Classification and Fuzzy Inference Rules

  • Kim Jin Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.153-156
    • /
    • 2005
  • In this paper, a framework for implementing UFIS (Unified Fuzzy rule-based knowledge Inference System) is presented. First, fuzzy clustering and fuzzy rules deal with the presence of the knowledge in DB (DataBase) and its value is presented with a value between 0 and 1. Second, RDB (Relational DB) and SQL queries provide more flexible functionality fur knowledge management than the conventional non-fuzzy knowledge management systems. Therefore, the obtained fuzzy rules offer the user additional information to be added to the query with the purpose of guiding the search and improving the retrieval in knowledge base and/ or rule base. The framework can be used as DM (Data Mining) and ES (Expert Systems) development and easily integrated with conventional KMS (Knowledge Management Systems) and ES.

  • PDF