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Likelihood Based Inference for the Shape Parameter
of the Inverse Gaussian Distribution

Woo Dong Lee1), Sang Gil Kang2), Dongseok Kim3)

Abstract

Small sample likelihood based inference for the shape parameter of the inverse
Gaussian distribution is the purpose of this paper. When shape parameter is of in-
terest, the signed log-likelihood ratio statistic and the modified signed log-likelihood
ratio statistic are derived. Hsieh (1990) gave a statistical inference for the shape
parameter based on an exact method. Throughout simulation, we will compare
the statistical properties of the proposed statistics to the statistic given by Hsieh
(1990) in term of confidence interval and power of test. We also discuss a real data
example.

Keywords: Inverse Gaussian distribution; shape parameter; signed log-likelihood
statistics; modified signed log-likelihood ratio statistics.

1. Introduction

The inverse Gaussian distribution has its origin in the Wiener process as the first
passage time distribution. It is also an approximation to the sample size distribution in
a sequential probability ratio test. For these reasons, the inverse Gaussian distribution
is also known as the first passage time or the Wald distribution.

This distribution has potentially useful applications in a wide variety of fields such
as biology, economics, reliability theory, life testing and social sciences as discussed in
Folks and Chhikara (1978), Chhikara and Folks (1989), Whitmore (1979), Seshadri (1999)
and Mudholkar and Natarajan (2002). Tweedie (1957a, 1957b) studied many important
statistical properties of this distribution and discussed the similarity between statistical
methods based on the inverse Gaussian distribution and those based on the normal
distribution. A comprehensive discussion on the inverse Gaussian distributions can be
found in books of Chhikara and Folks (1989) and Seshadri (1999).

From a reliability point of view, Chhikara and Folks (1977) showed that if the lifetime
of a machine has the inverse Gaussian distribution and the shape parameter is less than
2 and given that the machine has survived up to time t0(a known value), then the mean
residual time will eventually exceed the original mean lifetime. In practice, the shape
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parameter is typically unknown. So, one may want to estimate it or perform a statistical
test for the shape parameter.

Related with this problem, Kang et al. (2004) developed a Bayesian inference for the
shape parameter using noninformative priors. Hsieh (1990) derived an exact test for the
shape parameter of the inverse Gaussian distribution. He showed that, through simu-
lation, the confidence intervals proposed by Folks and Chhikara (1978) did not achieve
nominal levels. He also gave some useful quantiles of test statistics for small to moderate
sample sizes of odd numbers with respect to preassigned values of the shape parameter.
However, one may be interested in testing shape parameters with some other values given
in his Table or even sample size. In these cases, one must compute along with the method
given in Hsieh (1990). However, it is not a convenient way for statistical inferences in
practice.

Instead of using his Table, if there exists a highly accurate statistic which distributes
as a well-known distribution such as the standard normal, it is convenient to perform a
test or to construct a confidence interval. There are two famous such statistics based
on likelihood-based methods, the signed log-likelihood ratio test and the modified signed
log-likelihood ratio test, found in Barndorff-Nielsen and Cox (1994). These two statistics
distribute as asymptotically standard normal distributions. Specially, the modified signed
log-likelihood statistic can be applied for a small sample and moderate sample sizes.

In this paper, we propose the signed log-likelihood ratio test and the modified signed
log-likelihood ratio test for testing the shape parameter of the inverse Gaussian distribu-
tion. Using these statistics, we will compare exact test and two likelihood-based tests in
terms of the coverage probability and the expected length of confidence intervals, Type
I error and the power of test statistics.

This article is organized as follows. In Section 2, we introduce the likelihood-based
inference methods, which will employ to test the hypothesis of the shape parameter and
to construct the confidence intervals for the shape parameters. In Section 3, we show
some simulation results to demonstrate the accuracy of the proposed methods and Hsieh
(1990). In Section 4, a real data example is examined and simulation results are provided.
At last, some final remarks are recorded.

2. Likelihood-Based Methods

The probability density function(p.d.f.) of the two parameter inverse Gaussian dis-
tribution is given by

f(x |µ, λ) =

√
λ

2π
x−

3
2 exp

{
−λ(x− µ)2

2µ2x

}
, λ, µ > 0, x > 0. (2.1)

Let the notation X ∼ IG(µ, λ) denote that the random variable X has an inverse Gaus-
sian distribution with p.d.f. given (2.1). As a note, the mean and variance of X are µ
and µ3/λ, respectively. Let

θ1 =
λ

µ

be the parameter of interest. This parameter θ1 determines the shape of the distribution
and the density function is highly skewed for moderate values of θ1. As θ1 increases the
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inverse Gaussian tends towards the normal law. The coefficient of variation, the skewness
and the kurtosis of X are closely related with θ1. These values are θ

−1/2
1 , 3θ

−1/2
1 and

15θ−1
1 , respectively. So, once we construct the confidence interval for θ1, one can easily

construct the confidence interval for the coefficient of variation, the skewness and the
kurtosis, since these functions are monotone functions of θ1.

Let X1, X2, . . . , Xn be the random sample from p.d.f. (2.1). Then the likelihood
function of µ and λ given observations x = (x1, x2, . . . , xn) is given by

L(µ, λ |x) = (2π)−
n
2 λ

n
2

(
n∏

i=1

x
− 3

2
i

)
exp

(
− λ

2µ2
t1 +

nλ

µ
− λ

2
t2

)
, (2.2)

where t1 =
∑n

i=1 xi and t2 =
∑n

i=1 x−1
i . It can be easily verified that the maximum

likelihood estimates(m.l.e.) of µ and λ are given by

µ̂ =
t1
n

and λ̂ =
n

t2 − n2

t1

,

respectively. Let

θ1 =
λ

µ
and θ2 =

2
µ

+
1
λ

.

Here θ1 is the parameter of interest and θ2 is nuisance parameter. This transformation
is actually an orthogonal transformation, i.e., the information matrix is diagonal, in the
sense of Cox and Reid (1987). Though there may exist other transformations, we prefer
to use it, because the constraint m.l.e. for nuisance parameter can be obtained explicitly.
Under this transformation, the log-likelihood function of θ = (θ1, θ2) given x is

l(θ1, θ2) =− n

2
log(2π) +

n

2
log(2θ1 + 1)− n

2
log(θ2)− 3

2

n∑

i=1

log(xi)

− θ2
1θ2

2(2θ1 + 1)
t1 + nθ1 − 2θ1 + 1

2θ2
t2. (2.3)

Now, one can make an inference about θ1 based on the signed log-likelihood ratio statistic
using (2.3).

r ≡ r(θ1) = sgn
(
θ̂1 − θ1

) [
2

{
l
(
θ̂1, θ̂2

)
− l

(
θ1, θ̂2(θ1)

)}] 1
2

, (2.4)

where θ̂ = (θ̂1, θ̂2) denote m.l.e. of θ = (θ1, θ2) and θ̂2(θ1) denotes the constrained m.l.e.
of θ2 for a fixed θ1. This constrained m.l.e. of θ2 can be obtained by solving the following
equation.

∂l(θ1, θ2)
∂θ2

= − n

2θ2
− θ2

1t1
2(2θ1 + 1)

+
(2θ1 + 1)t2

2θ2
2

= 0.

The solution of the above equation for θ2, the constrained m.l.e. of θ2 is given by

θ̂2(θ1) =

n(2θ1 + 1)

(√
1 + 4θ2

1

t1t2
n2

− 1

)

2θ2
1t1

. (2.5)
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It is well known that r is approximately distributed as a standard normal to the first
order, O(n−1/2). For testing the null hypothesis H0 : θ1 = θ10, a two-sided p-value can
be obtained from

p-value = 2P (r > |r0|) ≈ 2{1− Φ(|r0|)}, (2.6)

where Φ(·) is the distribution function(d.f.) of the standard normal distribution and r0 =
r(θ10) is the observed value of r under H0. Furthermore, the approximate 100(1− α)%
confidence interval for θ1 can be obtained from

{
θ1 : |r(θ1)| ≤ zα

2

}
, (2.7)

where zα/2 is the 100(1− α)% percentile of the standard normal distribution.
In general, the first order approximation is not accurate especially when the sample

size is small. There are several ways to improve the accuracy of the approximation by
adjusting the signed log-likelihood statistic r. Among the others approximations, the
modified signed log-likelihood ratio statistics, r∗, developed by Barndorff-Nielsen (1986)
and Barndorff-Nielsen (1991), is a highly accurate approximation. In fact, this is the
third order approximation and is given by

r∗ ≡ r∗(θ1) = r(θ1) + r(θ1)−1 log
{

u(θ1)
r(θ1)

}
, (2.8)

where u(θ1) is a statistic given by

u(θ1) =

∣∣∣l;θ̂
(
θ̂1, θ̂2

)
− l;θ̂

(
θ1, θ̂2(θ1)

)
lθ2;θ̂

(
θ1, θ̂2(θ1)

)∣∣∣
{∣∣∣jθθ

(
θ̂1, θ̂2

)∣∣∣
∣∣∣jθ2θ2

(
θ1, θ̂2(θ1)

)∣∣∣
} 1

2
, (2.9)

where the sample-space derivatives in (2.9) are defined by

l;θ̂(θ1, θ2) =
∂

∂θ̂
l
(
θ1, θ2; θ̂

)
,

the mixed derivatives as
lθ2;θ̂

(θ1, θ2) =
∂

∂θ2
l;θ̂(θ1, θ2)

and jθ1θ2(θ̂1, θ̂2) is the observed information matrix and jθ2θ2(θ1, θ̂2(θ1)) is the observed
nuisance information matrix (Barndorff-Nielsen, 1991).

This statistic r∗ also distributes as approximately standard normal distribution with
error O(n−3/2). So, one can obtain the p-value of testing H0 : θ1 = θ10 based on r∗ as

p-value = 2P (r∗ > |r∗0 |) ≈ 2{1− Φ(|r∗0 |)}, (2.10)

where r∗0 = r∗(θ10) and the approximate 100(1− α)% confidence interval can be derived
from {

θ1 : |r∗(θ1)| ≤ zα
2

}
, (2.11)

which will be more accurate than (2.6) and (2.7).
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Since the inverse Gaussian distribution is a full rank exponential model, the log-
likelihood based on sample data is only related to a minimum sufficient statistics t =
(t1, t2) given in (2.2), and there is an one-to-one correspondence between the m.l.e. θ̂

and t, the sample space derivatives with respect to θ̂ in (2.9) can be derived based on
the sample space derivatives with respect to t. In this transformation, the Jacobian
matrix is ∂θ̂/∂t. Using the identity jθθ(θ̂) = lθ;θ̂(θ̂) and canceling the determinant of the
transformation Jacobian matrix, one can show that u can be rewritten as

u(θ1) =

∣∣∣l;t
(
θ̂1, θ̂2

)
− l;t

(
θ1, θ̂2(θ1)

)
lθ2;t

(
θ2, θ̂2(θ1)

)∣∣∣
∣∣∣lθ;t

(
θ̂1, θ̂2

)∣∣∣





∣∣∣jθθ

(
θ̂1, θ̂2

)∣∣∣
∣∣∣jθ2θ2

(
θ1, θ̂2(θ1)

)∣∣∣





1
2

,

where the sample space derivatives l;t(θ) and the mixed derivatives lθ2;t(θ) = ∂2l(θ)/(∂θ2∂t)
are given by

l;t(θ1, θ2) =
(
− θ2

1θ2

2(2θ1 + 1)
− 2θ1 + 1

2θ2

)′

and

lθ2;t(θ1, θ2) =
(
− θ2

1

2(2θ1 + 1)
− 2θ1 + 1

2θ2
2

)′
,

respectively. The observed information matrix is given by

jθθ(θ1, θ2) =



−2n(2θ1 + 1) + θ2t1

(2θ1 + 1)3
−θ1(θ1 + 1)θ1

2t1 − (2θ1 + 1)2t2
(2θ1 + 1)2θ2

2

sym
nθ2 − 2(2θ1 + 1)t2

2θ3
2


 ,

and the mixed derivative matrix lθ;t(θ1, θ2) is given by

lθ;t(θ1, θ2) =



−θ1θ2(θ1 + 1)

(2θ1 + 1)2
− 1

θ2

− θ2
1

2(2θ1 + 1)
2θ1 + 1

2θ2
2


 .

Finally, the observed nuisance information matrix is given by

jθ2θ2(θ1, θ2) =
nθ2 − 2(2θ1 + 1)t2

2θ3
2

.

Using the above results, we can calculate the following determinants.

∣∣∣l;t
(
θ̂1, θ̂2

)
− l;t

(
θ1, θ̂2(θ1)

)
lθ2;t

(
θ2, θ̂2(θ1)

)∣∣∣ =
2θ2

1

4θ̂2(θ1)

− (2θ1 + 1)θ̂1

2
θ̂2

4
[
θ̂2(θ1)

]2 (
2θ̂1 + 1

)

−
θ2
1

(
2θ̂1 + 1

)

4θ̂2(2θ1 + 1)
,

∣∣∣lθ;t

(
θ̂1, θ̂2

)∣∣∣ =− θ̂1

2θ̂2

,
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∣∣∣jθθ

(
θ̂1 , θ̂2

)∣∣∣ =−

(
2θ̂1 + 1

)
θ̂2

{
2n

(
2θ̂1 + 1

)
+ θ̂2t1

} {
nθ̂2 − 2

(
2θ̂1 + 1

)
t2

}

2
(
2θ̂1 + 1

)4

θ̂2

4

−
2

{
θ̂1

(
θ̂1 + 1

)
θ̂2
2t1 −

(
2θ̂1 + 1

)2

t2

}2

2
(
2θ̂1 + 1

)4

θ̂2

4
,

and

∣∣∣jθ2θ2

(
θ1, θ̂2(θ1)

)∣∣∣ =
nθ̂2(θ1) − 2(2θ1 + 1)t2

2
[
θ̂2(θ1)

]3 .

Hence, we are ready to make a statistical inference of θ1 based on r and r∗.
Hsieh (1990) calculated the distribution function of W = (XV )−1, where X =∑n

i=1 Xi/n and V =
∑n

i=1 X−1
i /n − n/

∑n
i=1 Xi, using the negative moments of the

inverse Gaussian distribution. The distribution function F of W is given by

F (w)=
enθ1(1−

√
1+1/w)

√
1+1/w

k−1∑

j=0





(nθ1)
j

j!
[
2w

√
1+1/w

]j

j∑
s=0

(j + s)!

s! (j−s)!
[
2(nθ1)

√
1+1/w

]s





, (2.12)

where k = (n− 1)/2.
He reported the quantiles of W from Table I to Table IV with several values of θ1

and odd sample size. When the sample size is even, he suggested the use of average
of neighboring odd numbers. Indeed, one can make an exact statistical inference using
these Tables. But it is still inconvenient for statistical inferences with another values of
parameter and sample size.

3. Simulations and Real Example

In this Section, we want to compare the coverage probabilities, expected lengths of
the confidence intervals and power of the test based on two likelihood-based methods
and exact method by Hsieh (1990).

We take 10,000 independent random samples from inverse Gaussian distribution. We
assume θ1 = 0.5, 1, 2, 5 and θ2 = 0.5, 1, 2, 3 and construct confidence intervals with
α = 0.1. We also assume the sample size as 5, 7, 9, 11, 15, 25, 35 on the purpose of
comparisons with Hsieh (1990).

In simulation results, the values of nuisance parameter do not affect the coverage
probabilities and expected lengths of two likelihood-based methods. Table 3.1 reports
estimated coverage probabilities and expected length of three methods. In Table 3.1, rL

and rU , r∗L and r∗U and FL and FU are lower and upper coverage probabilities of r, r∗

and exact method, respectively. lengthr, length∗r and lengthF are estimated expected
lengths of r, r∗ and exact method, respectively.

From Table 3.1, we can observe that
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Table 3.1: Estimated coverage probabilities and expected length

θ1 = 0.5

n rL rU r∗L r∗U FL FU lengthr length∗r lengthF

5 .7646 .0000 .2232 .0000 .2052 .0000 9.53855 7.91468 7.81395

θ2 = 0.5
9 .2526 .0000 .1089 .0000 .1050 .0000 2.57988 2.33488 2.32659
11 .1726 .0000 .0786 .0000 .0764 .0000 1.82367 1.68326 1.67901

µ = 8
15 .1193 .0000 .0579 .0000 .0570 .0000 1.21871 1.15116 1.14929

λ = 4
20 .0993 .0000 .0532 .0108 .0398 .0249 .92372 .88579 .86098
25 .0864 .0232 .0495 .0465 .0495 .0466 .77315 .74789 .74737
35 .0846 .0279 .0522 .0516 .0521 .0517 .62471 .61012 .60990
5 .7624 .0000 .2177 .0000 .1995 .0000 9.45937 7.84896 7.74912

θ2 = 1
9 .2556 .0000 .1088 .0000 .1058 .0000 2.58117 2.33602 2.32774
11 .1802 .0000 .0778 .0000 .0765 .0000 1.83366 1.69246 1.68818

µ = 4
15 .1218 .0000 .0610 .0000 .0605 .0000 1.22299 1.15518 1.15331

λ = 2
20 .1011 .0000 .0597 .0093 .0443 .0213 .92576 .88775 .86288
25 .0890 .0243 .0540 .0499 .0540 .0501 .77506 .74973 .74920
35 .0788 .0290 .0508 .0470 .0507 .0470 .62401 .60943 .60921
5 .7712 .0000 .2176 .0000 .1978 .0000 9.48158 7.86738 7.76729

θ2 = 2
9 .2505 .0000 .1062 .0000 .1041 .0000 2.59064 2.34454 2.33624
11 .1810 .0000 .0862 .0000 .0847 .0000 1.85309 1.71033 1.70601

µ = 2
15 .1235 .0000 .0589 .0000 .0581 .0000 1.21978 1.15218 1.15030

λ = 1
20 .0999 .0000 .0548 .0098 .0406 .0228 .92351 .88561 .86080
25 .0867 .0269 .0500 .0508 .0498 .0508 .76932 .74421 .74368
35 .0831 .0297 .0521 .0496 .0518 .0497 .62399 .60941 .60919
5 .7599 .0000 .2181 .0000 .1956 .0000 9.38378 7.78623 7.68722

θ2 = 3
9 .2486 .0000 .1007 .0000 .0976 .0000 2.55572 2.31305 2.30485
11 .1794 .0000 .0821 .0000 .0802 .0000 1.84514 1.70300 1.69870

µ = 1.33
15 .1214 .0000 .0585 .0000 .0578 .0000 1.21730 1.14984 1.14796

λ = 0.67
20 .0977 .0000 .0529 .0117 .0398 .0252 .92348 .88557 .86077
25 .0890 .0251 .0514 .0491 .0511 .0492 .77545 .75010 .74957
35 .0806 .0311 .0500 .0535 .0495 .0535 .62035 .60587 .60566

θ1 = 1

n rL rU r∗L r∗U FL FU lengthr length∗r lengthF

5 .3649 .0000 .0829 .0000 .0717 .0000 9.94939 8.25565 8.15029

θ2 = 0.5
9 .1409 .0000 .0584 .0000 .0569 .0000 3.28010 2.96656 2.95620
11 .1131 .0000 .0502 .0035 .0497 .0045 2.51062 2.31440 2.30900

µ = 6
15 .0982 .0231 .0527 .0504 .0525 .0507 1.89642 1.78764 1.78540

λ = 6
20 .0926 .0297 .0503 .0540 .0365 .0670 1.53642 1.47020 1.42919
25 .0871 .0295 .0526 .0491 .0524 .0492 1.32413 1.27842 1.27785
35 .0783 .0324 .0507 .0517 .0505 .0518 1.06725 1.04090 1.04067
5 .3654 .0000 .0826 .0000 .0730 .0000 9.93596 8.24451 8.13930

θ2 = 1
9 .1353 .0000 .0550 .0000 .0537 .0000 3.21985 2.91219 2.90201
11 .1150 .0000 .0517 .0023 .0501 .0028 2.52531 2.32794 2.32249

µ = 3
15 .1033 .0261 .0522 .0521 .0514 .0525 1.90419 1.79495 1.79270

λ = 3
20 .0910 .0221 .0523 .0457 .0367 .0610 1.53893 1.47259 1.43152
25 .0846 .0290 .0467 .0496 .0465 .0499 1.31405 1.26870 1.26814
35 .0839 .0316 .0521 .0519 .0520 .0519 1.07083 1.04440 1.04416
5 .3728 .0000 .0863 .0000 .0759 .0000 10.05795 8.34576 8.23918

θ2 = 2
9 .1430 .0000 .0593 .0000 .0575 .0000 3.28032 2.96675 2.95639
11 .1177 .0000 .0578 .0028 .0564 .0033 2.52868 2.33104 2.32559

µ = 1.5
15 .1008 .0222 .0482 .0500 .0476 .0504 1.89971 1.79072 1.78847

λ = 1.5
20 .0907 .0270 .0505 .0500 .0329 .0614 1.53069 1.46472 1.42387
25 .0869 .0292 .0509 .0518 .0504 .0520 1.31735 1.27188 1.27131
35 .0790 .0318 .0481 .0493 .0480 .0493 1.06660 1.04028 1.04004
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Table 3.1 (continued)
5 .3751 .0000 .0869 .0000 .0790 .0000 10.11743 8.39512 8.28788

θ2 = 3
9 .1400 .0000 .0581 .0000 .0562 .0000 3.27180 2.95905 2.94872
11 .1099 .0000 .0481 .0020 .0474 .0029 2.50833 2.31229 2.30689

µ = 1
15 .0974 .0214 .0469 .0460 .0462 .0462 1.88206 1.77412 1.77189

λ = 1
20 .0923 .0268 .0501 .0496 .0362 .0633 1.53829 1.47198 1.43093
25 .0808 .0263 .0493 .0484 .0492 .0490 1.31533 1.26993 1.26936
35 .0789 .0319 .0490 .0498 .0488 .0498 1.06896 1.04257 1.04233

θ1 = 2

n rL rU r∗L r∗U FL FU lengthr length∗r lengthF

5 .1740 .0000 .0216 .0000 .0177 .0000 11.58937 9.61679 9.49299

θ2 = 0.5
9 .1171 .0158 .0477 .0450 .0468 .0459 5.29643 4.78694 4.77010
11 .1125 .0222 .0517 .0482 .0509 .0491 4.42435 4.07491 4.06553

µ = 5
15 .0932 .0277 .0490 .0518 .0487 .0523 3.41040 3.21208 3.20820

λ = 10
20 .0884 .0297 .0511 .0543 .0355 .0710 2.77945 2.65789 2.58359
25 .0839 .0336 .0512 .0547 .0507 .0548 2.39427 2.31036 2.30938
35 .0756 .0315 .0470 .0499 .0468 .0500 1.94083 1.89215 1.89175
5 .1621 .0000 .0216 .0000 .0176 .0000 11.43124 9.48555 9.36353

θ2 = 1
9 .1193 .0165 .0473 .0457 .0460 .0464 5.28452 4.77618 4.75938
11 .1082 .0222 .0494 .0465 .0487 .0475 4.41000 4.06171 4.05235

µ = 2.5
15 .0983 .0275 .0495 .0529 .0491 .0534 3.41512 3.21652 3.21264

λ = 5
20 .0841 .0278 .0493 .0476 .0339 .0621 2.76773 2.64669 2.57270
25 .0851 .0296 .0514 .0499 .0512 .0502 2.39917 2.31509 2.31410
35 .0754 .0347 .0493 .0509 .0489 .0510 1.93526 1.88672 1.88632
5 .1633 .0000 .0221 .0000 .0180 .0000 11.42261 9.47838 9.35646

θ2 = 2
9 .1166 .0144 .0480 .0421 .0464 .0431 5.29608 4.78662 4.76978
11 .1131 .0234 .0519 .0513 .0511 .0521 4.39953 4.05206 4.04273

µ = 1.25
15 .1014 .0239 .0518 .0467 .0512 .0471 3.44462 3.24429 3.24037

λ = 2.5
20 .0928 .0280 .0523 .0512 .0368 .0682 2.78350 2.66176 2.58736
25 .0863 .0308 .0516 .0496 .0509 .0498 2.39455 2.31063 2.30965
35 .0742 .0305 .0467 .0480 .0466 .0481 1.93204 1.88359 1.88318
5 .1667 .0000 .0201 .0000 .0162 .0000 11.51323 9.55361 9.43065

θ2 = 3
9 .1123 .0171 .0450 .0447 .0437 .0455 5.22968 4.72664 4.71002
11 .1142 .0229 .0489 .0526 .0479 .0534 4.41260 4.06410 4.05474

µ = 0.83
15 .0986 .0287 .0526 .0510 .0521 .0513 3.41590 3.21726 3.21338

λ = 1.67
20 .0879 .0308 .0495 .0536 .0328 .0708 2.76140 2.64064 2.56682
25 .0839 .0292 .0526 .0502 .0516 .0505 2.40232 2.31813 2.31715
35 .0774 .0311 .0508 .0481 .0505 .0482 1.94076 1.89209 1.89169

θ1 = 5

n rL rU r∗L r∗U FL FU lengthr length∗r lengthF

5 .0236 .0000 .0000 .0346 .0000 .0395 16.34822 13.56656 13.38938

θ2 = 0.5
9 .0725 .0233 .0259 .0546 .0250 .0560 11.22873 10.14524 10.10910
11 .0750 .0219 .0294 .0472 .0283 .0483 9.70142 8.93221 8.91153

µ = 4.4
15 .0821 .0272 .0378 .0512 .0374 .0515 7.80603 7.34990 7.34108

λ = 22
20 .0827 .0292 .0468 .0491 .0293 .0668 6.43074 6.14799 5.97597
25 .0858 .0312 .0506 .0513 .0504 .0516 5.58621 5.38934 5.38710
35 .0718 .0321 .0488 .0491 .0487 .0493 4.52973 4.41546 4.41454
5 .0258 .0000 .0000 .0358 .0000 .0397 16.39849 13.60829 13.43054

θ2 = 1
9 .0755 .0228 .0260 .0499 .0253 .0511 11.24394 10.15898 10.12279
11 .0730 .0215 .0311 .0468 .0302 .0475 9.70115 8.93196 8.91128

µ = 2.2
15 .0866 .0286 .0426 .0509 .0418 .0517 7.83855 7.38051 7.37165

λ = 11
20 .0773 .0289 .0422 .0525 .0270 .0688 6.38316 6.10250 5.93176
25 .0804 .0324 .0476 .0516 .0474 .0517 5.56561 5.36947 5.36724
35 .0740 .0344 .0498 .0505 .0498 .0511 4.51381 4.39994 4.39903
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Table 3.1 (continued)
5 .0261 .0000 .0000 .0358 .0000 .0391 16.42718 13.63211 13.45403

θ2 = 2
9 .0712 .0243 .0246 .0560 .0238 .0569 11.10716 10.03542 9.99967
11 .0698 .0249 .0280 .0489 .0271 .0496 9.63882 8.87458 8.85404

µ = 1.1
15 .0832 .0264 .0370 .0475 .0361 .0485 7.84741 7.38885 7.37999

λ = 5.5
20 .0807 .0290 .0455 .0474 .0296 .0658 6.42462 6.14213 5.97028
25 .0823 .0317 .0484 .0513 .0475 .0516 5.57657 5.38004 5.37781
35 .0784 .0297 .0500 .0477 .0499 .0479 4.54801 4.43328 4.43235
5 .0252 .0000 .0000 .0391 .0000 .0421 16.43485 13.63847 13.46032

θ2 = 3
9 .0722 .0203 .0247 .0509 .0232 .0521 11.17478 10.09651 10.06054
11 .0755 .0241 .0339 .0515 .0330 .0526 9.76215 8.98812 8.96731

µ = 0.73
15 .0836 .0287 .0391 .0512 .0385 .0515 7.81748 7.36068 7.35184

λ = 3.67
20 .0861 .0280 .0476 .0508 .0291 .0684 6.44740 6.16392 5.99145
25 .0798 .0284 .0464 .0489 .0461 .0490 5.55471 5.35895 5.35673
35 .0757 .0321 .0492 .0494 .0490 .0494 4.54271 4.42811 4.42718

1. the result based on r is quite inaccurate and not symmetric. Also, the expected
length is the longest of them all.

2. r∗ gives relatively accurate coverage probabilities for sample size greater than 25.
But it is unsatisfactory for a small sample size less than 25.

3. The results based on exact method are the best in coverage probabilities and ex-
pected lengths. And the coverage probabilities and expected length based on r∗

are the second. But the results based on r are poor.

Though the result about small sample is unsatisfactory, we obtain the fact that the
proposed likelihood-based method r∗ has almost the same properties as exact method.

Next, we want to compare three test statistics in terms of the probability of Type I
error and power. We assume that the null hypothesis is H0 : θ1 ≥ 2 and the alternative
hypothesis is H1 : θ1 < 2. As mentioned above, the inverse Gaussian distribution has
special meaning when the shape parameter θ1 < 2. We obtain the probability of Type
I error and power of r and r∗ with critical value −1.645, which is 5% quantile of the
standard normal distribution. For the test given by Hsieh (1990), we use critical values
given in Hsieh (1990) with respect to the values of θ1 and sample sizes. When the sample
size is even, the critical value is obtained by the average of neighboring odd values. These
values according to the sample size are given below:

n 5 10 15 20 25 30
critical value 0.978 1.106 1.196 1.260 1.309 1.349

Table 3.2 shows the results. In this Table, we also replicate 10,000 to obtain the
probability of Type I error and power. We assume θ1 = 0.5, 1, 1.5, 2 and θ2 = 0.5, 1, 2, 5.
In Table 3.2, the probability of Type I error corresponds to the value when θ1 = 2. And
the power of tests corresponds to the values when θ1 = 0.5, 1, 1.5.

The results do not make substantial differences with the change of nuisance parameter
θ2. The probabilities of Type I error of r∗ and exact method are almost same. In fact,
r∗ has almost the same Type I error rate as the exact method. From a viewpoint of the
power, r∗ is as powerful as the exact method. As we have seen in this Table, the Type I
error rate and the power of r were poor.
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Table 3.2: Estimated probabilities of Type I error and power

θ1 n
θ2 = 0.5 θ2 = 1 θ2 = 2 θ2 = 5

r r∗ F r r∗ F r r∗ F r r∗ F
5 .394 .528 .521 .387 .528 .520 .390 .530 .523 .395 .530 .523
10 .695 .777 .775 .687 .769 .768 .689 .766 .765 .692 .777 .775

0.5
15 .849 .892 .891 .852 .894 .894 .851 .894 .893 .852 .892 .891
20 .929 .950 .949 .927 .948 .947 .931 .952 .951 .931 .951 .951
25 .968 .978 .978 .967 .977 .977 .968 .977 .977 .969 .979 .979
30 .985 .989 .989 .984 .989 .989 .985 .990 .990 .986 .991 .990
5 .142 .257 .252 .144 .262 .256 .136 .253 .246 .143 .258 .252
10 .295 .403 .400 .290 .404 .402 .294 .403 .401 .292 .401 .399

1.0
15 .415 .513 .512 .417 .519 .518 .415 .516 .514 .419 .519 .518
20 .526 .609 .608 .528 .610 .609 .524 .609 .608 .527 .609 .608
25 .618 .688 .687 .617 .687 .686 .619 .692 .691 .616 .687 .686
30 .691 .752 .751 .689 .747 .747 .689 .750 .749 .696 .755 .755
5 .044 .119 .114 .048 .121 .116 .044 .114 .109 .047 .117 .112
10 .089 .158 .157 .086 .156 .154 .088 .159 .157 .085 .155 .154

1.5
15 .120 .189 .188 .121 .188 .187 .122 .189 .188 .123 .190 .188
20 .151 .218 .217 .151 .216 .215 .155 .219 .218 .156 .222 .221
25 .186 .252 .251 .184 .247 .247 .183 .244 .244 .189 .254 .254
30 .217 .284 .283 .213 .275 .274 .213 .274 .274 .219 .280 .280
5 .014 .049 .047 .014 .050 .048 .014 .051 .048 .012 .047 .044
10 .022 .050 .050 .019 .048 .047 .020 .049 .048 .021 .049 .049

2.0
15 .024 .050 .050 .025 .048 .048 .024 .049 .049 .024 .051 .050
20 .026 .048 .047 .028 .050 .050 .028 .049 .049 .027 .048 .048
25 .031 .053 .052 .028 .048 .048 .029 .049 .049 .028 .049 .048
30 .030 .049 .049 .028 .046 .046 .029 .049 .049 .031 .050 .050

Table 3.3: Confidence intervals for Jug Bridge

Method 90% 95% 99%
Exact (0.875, 2.706) (0.756, 2.945) (0.628, 3.237)

r (0.986, 2.885) (0.861, 3.129) (0.726, 3.429)
r∗ (0.876, 2.708) (0.757, 2.946) (0.628, 3.239)

Example 3.1 Hsieh (1990) considered a set of data representing runoff amounts of Jug
Bridge, Maryland :

0.17 0.19 0.23 0.33 0.39 0.39 0.40 0.45 0.52 0.56 0.59 0.64 0.66
0.70 0.76 0.77 0.78 0.95 0.97 1.02 1.12 1.24 1.59 1.74 2.92

Folks and Chhikara (1978) mentioned the data given above to be very well described
by the inverse Gaussian distribution. Hsieh (1990) used the data for testing H0 : θ1 ≥ 2
versus H1 : θ1 < 2. He reported statistics related to this data as n = 25, X = 0.803,
V = 0.695 and W = 1.792. He rejected H0 at 1% significance level with the critical
value 1.078. But this conclusion is wrong. In his Table, 5% quantile of W is 1.309, so
he must have accepted H0 : θ1 ≥ 2 at 5% significance level. In our proposed methods,
r0 = −0.350(p-value = 0.363) and r∗0 = −0.599(p-value = 0.275), so we accept the null
hypothesis.

From the above data, we found that θ̂1 = 1.792, θ̂2 = 3.185. We construct the 90%,
95% and 99% confidence interval for θ1 based on three statistics in Table 3.3.
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From Table 3.3, the confidence interval based on r∗ is almost same as exact method.

4. Conclusions

We have suggested two likelihood-based methods. Though there exists an exact
method, it is inconvenient to perform a test because one must possess tables with respect
to specific values of parameters and sample sizes. The performances of the third order
normal approximation, r∗, are as good as the exact method proposed by Hsieh (1990).
However, we performed a long calculation to gain a highly exact approximation.

Our proposal has a merit that a well-known normal table can be used to test about
the shape parameter of the inverse Gaussian distribution even in small sample.
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