• 제목/요약/키워드: Data Extraction Techniques

검색결과 337건 처리시간 0.022초

기계학습기법에 기반한 국제 유가 예측 모델 (Oil Price Forecasting Based on Machine Learning Techniques)

  • 박강희;;신현정
    • 대한산업공학회지
    • /
    • 제37권1호
    • /
    • pp.64-73
    • /
    • 2011
  • Oil price prediction is an important issue for the regulators of the government and the related industries. When employing the time series techniques for prediction, however, it becomes difficult and challenging since the behavior of the series of oil prices is dominated by quantitatively unexplained irregular external factors, e.g., supply- or demand-side shocks, political conflicts specific to events in the Middle East, and direct or indirect influences from other global economical indices, etc. Identifying and quantifying the relationship between oil price and those external factors may provide more relevant prediction than attempting to unclose the underlying structure of the series itself. Technically, this implies the prediction is to be based on the vectoral data on the degrees of the relationship rather than the series data. This paper proposes a novel method for time series prediction of using Semi-Supervised Learning that was originally designed only for the vector types of data. First, several time series of oil prices and other economical indices are transformed into the multiple dimensional vectors by the various types of technical indicators and the diverse combination of the indicator-specific hyper-parameters. Then, to avoid the curse of dimensionality and redundancy among the dimensions, the wellknown feature extraction techniques, PCA and NLPCA, are employed. With the extracted features, a timepointspecific similarity matrix of oil prices and other economical indices is built and finally, Semi-Supervised Learning generates one-timepoint-ahead prediction. The series of crude oil prices of West Texas Intermediate (WTI) was used to verify the proposed method, and the experiments showed promising results : 0.86 of the average AUC.

3D Reconstruction of Urban Building using Laser range finder and CCD camera

  • Kim B. S.;Park Y. M.;Lee K. H.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.128-131
    • /
    • 2004
  • In this paper, we describe reconstructed 3D-urban modeling techniques for laser scanner and CCD camera system, which are loading on the vehicle. We use two laser scanners, the one is horizon scanner and the other is vertical scanner. Horizon scanner acquires the horizon data of building for localization. Vertical scan data are main information for constructing a building. We compared extraction of edge aerial image with laser scan data. This method is able to correct the cumulative error of self-localization. Then we remove obstacles of 3D-reconstructed building. Real-texture information that is acquired with CCD camera is mapped by 3D-depth information. 3D building of urban is reconstructed to 3D-virtual world. These techniques apply to city plan. 3D-environment game. movie background. unmanned-patrol etc.

  • PDF

PubMiner: Machine Learning-based Text Mining for Biomedical Information Analysis

  • Eom, Jae-Hong;Zhang, Byoung-Tak
    • Genomics & Informatics
    • /
    • 제2권2호
    • /
    • pp.99-106
    • /
    • 2004
  • In this paper we introduce PubMiner, an intelligent machine learning based text mining system for mining biological information from the literature. PubMiner employs natural language processing techniques and machine learning based data mining techniques for mining useful biological information such as protein­protein interaction from the massive literature. The system recognizes biological terms such as gene, protein, and enzymes and extracts their interactions described in the document through natural language processing. The extracted interactions are further analyzed with a set of features of each entity that were collected from the related public databases to infer more interactions from the original interactions. An inferred interaction from the interaction analysis and native interaction are provided to the user with the link of literature sources. The performance of entity and interaction extraction was tested with selected MEDLINE abstracts. The evaluation of inference proceeded using the protein interaction data of S. cerevisiae (bakers yeast) from MIPS and SGD.

Evaluation of Competitiveness of Domestic Aircraft Manufacturing Enterprises Using Data Mining Techniques

  • Ok, Juseon;Park, Chanwoo
    • 항공우주시스템공학회지
    • /
    • 제15권6호
    • /
    • pp.26-32
    • /
    • 2021
  • The global aircraft-manufacturing industry ecosystem is characterized by the international division of labor through the worldwide supply chain and by the concentration of value added at the top of the supply chain. As a result, the competition for entry into the top supply chain and for order expansion is becoming increasingly intensive. To increase their orders, domestic aircraft manufacturing enterprises need to enhance their competitiveness by evaluating and analyzing it. However, most domestic aircraft manufacturing companies are unaware of the need to quantitatively evaluate their competitiveness. It is challenging to perform such an evaluation, and there are few research cases. In this study, we quantitatively evaluated and analyzed the competitiveness of domestic aircraft manufacturers by using data mining techniques. Thereby, implications for enhancing their competitiveness could be identified.

Eigen Value 기반의 영상검색 기법 (Eigen Value Based Image Retrieval Technique)

  • 김진용;소운영;정동석
    • 정보기술과데이타베이스저널
    • /
    • 제6권2호
    • /
    • pp.19-28
    • /
    • 1999
  • Digital image and video libraries require new algorithms for the automated extraction and indexing of salient image features. Eigen values of an image provide one important cue for the discrimination of image content. In this paper we propose a new approach for automated content extraction that allows efficient database searching using eigen values. The algorithm automatically extracts eigen values from the image matrix represented by the covariance matrix for the image. We demonstrate that the eigen values representing shape information and the skewness of its distribution representing complexity provide good performance in image query response time while providing effective discriminability. We present the eigen value extraction and indexing techniques. We test the proposed algorithm of searching by eigen value and its skewness on a database of 100 images.

  • PDF

비공개 프로토콜 분류를 위한 특징 추출 알고리즘 비교 연구 (A Comparative Study of Feature Extraction Algorithm for unKnown Protocol Classification)

  • 정영규;정창민
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권5호
    • /
    • pp.251-255
    • /
    • 2019
  • 프로토콜 reverse-engineering 기술은 unknown protocol 의 스펙을 추출하기 위해서 보통 표준화된 방법이 없어서 대부분 수동으로 스펙을 분석하거나 반자동 방식으로 이를 분석한다. 만약 unknown protocol의 근간이 되는 프로토콜을 알 수 있다면, 이를 이용하여 스펙을 분석할 수 있으므로 자동화되고 정확한 분석이 가능할 것이다. 학습되지 않은 프로토콜을 분류하기 위해서는 특징추출은 매우 중요한 단계 중의 하나이다. 본 논문은 기존 프로토콜을 변형한 프로토콜에 대해서 높은 성능을 갖는 분류기를 개발하기 위해서 몇 가지 특징 추출 알고리즘을 제안하고, 프로토콜의 형태 변화에 강인한 특징추출 알고리즘을 제안한다. 성능 검증을 위해서 8개 공개 프로토콜을 대상으로 학습을 수행하고 이를 변형한 프로토콜을 대상으로 성능 측정을 진행하였다.

Knowledge Extraction from Academic Journals Using Data Mining Techniques

  • 남수현;김홍기
    • 한국디지털정책학회:학술대회논문집
    • /
    • 한국디지털정책학회 2005년도 춘계학술대회
    • /
    • pp.531-544
    • /
    • 2005
  • 최근 우리는 인접학문 간 그리고 학계와 산업계 간의 연구협조가 점차 증가하고 있음을 보아오고 있다. 이러한 현상은 특히 학술저널 간 지식의존성을 촉진하는 계기를 제공하고 있다고 할 수 있다. 본 논문의 목적은 관련저널 간 지식상호 의존성을 규명하고 저널지식의 구조화를 위하여 association, 군집화, 링크분석 등 데이터마이닝 기법을 적용하는 방법론을 제시하는 것이다. 제시된 방법을 통하여 기대되는 점들은 1) 논문의 기본속성인 키워드, 저자, 그리고 인용데이터를 통합하는 규칙 집합을 통하여 논문지식검색기능의 향상, 2) 키워드를 기반으로 관련 저널 간 그리고 저널내부의 군집분석으로 지식동향 파악, 3) Kleinberg (1999)의 권위와 허브 개념을 인용데이터 분석에 활용하여 기존의 양적 평가 기준인 영향력 지수 (impact factor)의 문제점을 보완하며, 4) 특정 논문이나 저널의 지식파급과 관련한 영향력을 산출하는 잠재적 지식파급 지수를 제안하는 것이다.

  • PDF

Rooftop 평면 추정에 의한 3차원 건물 모델 발생 (Generation of 3D Building Model Using Estimation of Rooftop Surface)

  • 강연욱;우동민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2921-2923
    • /
    • 2005
  • This paper presents to generate 3D building model using estimation of rooftop surface after 3D line segment extraction using hybrid stereo matching techniques in terms of the co-operation of area-based stereo and feature-based stereo. we first performed a junction extraction from 3D line segment data which was obtained by stereo images, and finally generated building's reliable rooftop surface model using LSE(Least Square Error) method after creating surfaces by grouped and fixed junction points. we generated synthetic images for experimentation by photo-realistic simulation on Avenches data set of Ascona aerial images.

  • PDF

Evaluation of Fabric Pilling Using Hybrid Imaging Methods

  • Kim Sung-Min;Park Chang-Kyu
    • Fibers and Polymers
    • /
    • 제7권1호
    • /
    • pp.57-61
    • /
    • 2006
  • A study has been made on the quantification and evaluation of fabric pilling using two-dimensional and three-dimensional hybrid imaging methods. Two-dimensional imaging method was good for some samples while three-dimensional measurement method for others, according to the properties of their base fabric. Various image processing techniques as well as three-dimensional data processing algorithms were applied for the extraction of pills from measured data and a series of shape parameters have been defined for the objective evaluation of fabric pilling. An evaluation criterion that is compatible with the conventional evaluation method has been proposed by applying the new evaluation method to the current photographic standards.

Knowledge Extraction from Academic Journals Using Data Mining Techniques

  • 남수현;김홍기
    • 디지털융복합연구
    • /
    • 제3권1호
    • /
    • pp.75-88
    • /
    • 2005
  • 최근 우리는 인접학문 간 그리고 학계와 산업계간의 연구협조가 점차 증가하고 있음을 보아오고 있다. 이러한 현상은 특히 학술저널 간 지식의존성을 촉진하는 계기를 제공하고 있다고 할 수 있다. 본 논문의 목적은 관련저널 간 지식상호 의존성을 규명하고 저널지식의 구조화를 위하여 연관성 (association), 군집화, 링크분석 등 데이터마이닝 기법을 적용하는 방법론을 제시하는 것이다. 제시된 방법을 통하여 기대되는 점들은 1) 논문의 기본 속성인 키워드, 저자, 그리고 인용데이터를 통합하는 규칙 집합을 통하여 논문지식검색기능의 향상, 2) 키워드를 기반으로 관련 저널 간 그리고 저널내부의 군집분석으로 지식동향 파악, 3) Kleinberg (1999)의 권위와 허브 개념을 인용데이터 분석에 활용하여 기존의 양적 평가 기준인 영향력지수 (impact factor)의 문제점을 보완하며, 4) 특정 논문이나 저널의 지식파급과 관련한 영향력을 산출하는 잠재적 지식파급 지수를 제안하는 것이다.

  • PDF