Journal of Korea Society of Digital Industry and Information Management
/
v.12
no.4
/
pp.51-58
/
2016
In the area of hotel and tourism sector, various research are analyzed using big data. Big data is being generated by any digital devices around us all the times. All the digital process and social media exchange produces the big data. In this paper, we analyzed the de-identification method of big data to use the personal information of hotel guests. Through the analysis of these big data, hotel can provide differentiated and diverse services to hotel guests and can improve the service and support the marketing of hotels. If the hotel wants to use the information of the guest, the private data should be de-identified. There are several de-identification methods of personal information such as pseudonymisation, aggregation, data reduction, data suppression and data masking. Using the comparison of these methods, the pseudonymisation is discriminated to the suitable methods for the analysis of information for the hotel guest. Also, among the pseudonymisation methods, the t-closeness was analyzed to the secure and efficient method for the de-identification of personal information in hotel.
Various security threats exist in the smart grid environment due to the fact that information and communication technology are grafted onto an existing power grid. In particular, smart metering data exposes a variety of information such as users' life patterns and devices in use, and thereby serious infringement on personal information may occur. Therefore, we are in a situation where a de-identification algorithm suitable for metering data is required. Hence, this paper proposes a new de-identification method for metering data. The proposed method processes time information and numerical information as de-identification data, respectively, so that pattern information cannot be analyzed by the data. In addition, such a method has an advantage that a query such as a direct range search and aggregation processing in a database can be performed even in a de-identified state for statistical processing and availability.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2017.05a
/
pp.750-753
/
2017
Recently, the processing and utilization of big data, which is generated by the spread of smartphone, SNS, and the internet of things, is emerging as a new growth engine of ICT field. However, in order to utilize such big data, De-identification of personal information should be done. De-identification removes identifying information from a data set so that individual data cannot be linked with specific individuals. De-identification can reduce the privacy risk associated with collecting, processing, archiving, distributing or publishing information, thus it attempts to balance the contradictory goals of using and sharing personal information while protecting privacy. De-identified information has also been re-identified and has been controversial for the protection of personal information, but the number of instances where personal information such as big data is de-identified and processed is increasing. In addition, many de-identification guidelines have been introduced and a method for de-identification of personal information has been proposed. Therefore, in this study, we describe the big data de-identification process and follow-up management, and then compare and analyze de-identification methods. Finally we provide personal information protection issues and solutions.
Recently, de-identification of personal information, which has been a long-cherished desire of the data-based industry, was revised and specified in August 2020. It became the foundation for activating data called crude oil[2] in the fourth industrial era in the industrial field. However, some people are concerned about the infringement of the basic rights of the data subject[3]. Accordingly, a development study was conducted on the Batch De-Identification Tool, a personal information de-identification automation tool. In this study, first, we developed an image labeling tool to label human faces (eyes, nose, mouth) and car license plates of various resolutions to build data for training. Second, an object recognition model was trained to run the object recognition module to perform de-identification of personal information. The automated personal information de-identification tool developed as a result of this research shows the possibility of proactively eliminating privacy violations through online services. These results suggest possibilities for data-based industries to maximize the value of data while balancing privacy and utilization.
With the development of data technology, storing and sharing of data has increased, resulting in privacy invasion. Although de-identification technology has been introduced to solve this problem, it has been proved many times that identifying individuals using de-identified data is possible. Even if it cannot be completely safe, sufficient de-identification is necessary. But current laws and regulations do not quantitatively specify the degree of how much de-identification should be performed. In this paper, we propose an appropriate de-identification criterion considering the time required for re-identification. We focused on the case of using the k-anonymity model among various privacy models. We analyzed the time taken to re-identify data according to the change in the k value. We used a re-identification method based on linkability. As a result of the analysis, we determined which k value is appropriate. If the generalized model can be developed by results of this paper, the model can be used to define the appropriate level of de-identification in various laws and regulations.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.206-208
/
2022
As the big data industry has recently developed significantly, interest in privacy violations caused by personal information leakage has increased. There have been attempts to automate this through named entity recognition in natural language processing. In this paper, named entity recognition data is constructed semi-automatically by identifying sentences with de-identification information from de-identification information in Korean Wikipedia. This can reduce the cost of learning about information that is not subject to de-identification compared to using general named entity recognition data. In addition, it has the advantage of minimizing additional systems based on rules and statistics to classify de-identification information in the output. The named entity recognition data proposed in this paper is classified into twelve categories. There are included de-identification information, such as medical records and family relationships. In the experiment using the generated dataset, KoELECTRA showed performance of 0.87796 and RoBERTa of 0.88.
In this study, the method of quality measurement for the statistical usefulness of de-identified data was examined in terms of prediction accuracy by statistical modeling. In the era of the 4th industrial revolution, effective use of big data is essential to innovation through information and communication technology, but personal information issues are constrained to actively utilize big data. In order to solve this problem, de-identification guidelines have been established and the possibility of actual re-identification of personal information has become very low due to the utilization of various de-identification methods. On the other hand, strong de-identification can have side effects that degrade the usefulness of the data. We have studied the quality of statistical usefulness of the de-identified data by KLT model which is a representative de-identification method, A case study was conducted to see how statistical accuracy of prediction is degraded by de-identification. We also proposed a new measure of data usefulness of the de-identified data by quantifying how much data is added to the de-identified data to restore the accuracy of the predictive model.
Journal of the Korean Society for Aviation and Aeronautics
/
v.29
no.4
/
pp.160-165
/
2021
In order to identify and analyze potential aviation safety hazards, analysis of aviation safety report data must be preceded. Therefore, in consideration of the provisions of the Aviation Safety Act and the recommendations of ICAO Doc 9859 SMM Edition 4th, personal information in the reporting data and sensitive information of the reporter, etc. It identifies the scope of de-identification targets and suggests a method for applying de-identification processing technology to personal and sensitive information including unstructured text data.
The Journal of the Convergence on Culture Technology
/
v.2
no.4
/
pp.71-76
/
2016
In this study, de-identification policies of the US, the UK, Japan, China and Korea are compared to suggest a future direction of de-identification regulations and a method for vitalizing the big data industry. Efficiently using the de-identification technology and the standard of adequacy evaluation contributes to using personal information for the industry to develop services and technology while not violating the right of private lives and avoiding the restrictions specified in the Personal Information Protection Act. As a counteraction, the re-identification issue may occur, for re-identifying each person as a de-identified data collection. From the perspective of business, it is necessary to mitigate schemes for discarding some regulations and using big data, and also necessary to strengthen security and refine regulations from the perspective of information security.
De-identification is a method by which the remaining information can not be referred to a specific individual by removing the personal information from the data set. As a result, de-identification can lower the exposure risk of personal information that may occur in the process of collecting, processing, storing and distributing information. Although there have been many studies in de-identification algorithms, protection models, and etc., most of them are limited to structured data, and there are relatively few considerations on de-identification of unstructured data. Especially, in the medical field where the unstructured text is frequently used, many people simply remove all personally identifiable information in order to lower the exposure risk of personal information, while admitting the fact that the data utility is lowered accordingly. This study proposes a new method to perform de-identification by applying the k-anonymity protection model targeting unstructured text in the medical field in which de-identification is mandatory because privacy protection issues are more critical in comparison to other fields. Also, the goal of this study is to propose a new utility metric so that people can comprehend de-identified data set utility intuitively. Therefore, if the result of this research is applied to various industrial fields where unstructured text is used, we expect that we can increase the utility of the unstructured text which contains personal information.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.