• Title/Summary/Keyword: Data Dam

Search Result 1,100, Processing Time 0.03 seconds

An Investigation of the Hydrological Safety for Downstream Areas Consideration of Dam Discharge (댐 방류량을 고려한 하류지역의 수리안정성 검토)

  • Jun, Kye-Won
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.166-171
    • /
    • 2012
  • This study aims to analyze the hydrological characteristics of downstream areas by the dam discharge of Soyanggang dam by using HEC-RAS Model. As a result of analyzing the data of dam discharge divided into hydropeaking discharge and total discharge, it as found that the maximum hydro-peaking discharge and the maximum total discharge have been 254.4 CMS and 1567.7 CMS respectively for the past 11 years. When the hydro-peaking discharge was applied to HEC-RAS Model, there occurred some sections where the water level rapidly changed, but the velocity of moving water was quite stable in the range between 0.23 m/sec and 1.16m/sec. Besides, when the total discharge was applied to this model, the submersible bridge along the dam downstream was flooded, and in some sections, the water level increased over the flood plain. Accordingly, this study judged that it is required to necessarily consider all the influence made by an increase of Soyanggang Dam's discharge when waterfronts are installed or used at dam downstream areas.

An Analysis of Streambed Changes Downstream of Daecheong Dam

  • Seo, Hyeong-Deok;Jeong, Sang-Man;Kim, Lee-Hyung;Choi, Kyu-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.103-108
    • /
    • 2008
  • Riverbed change is greatly influenced by artificial factors such as dam construction, gravel collection, and river improvement. This study simulated a long-term bed change based on the GSTARS3 model using actual data from the area downstream of the Geum River Daecheong Dam and compared the estimation with a section of the actual measurement. As a result, it was found that the section of the actual measurement was far lower than the result of the simulation in terms of long-term bed change. While the area downstream of Daecheong Dam displayed approximately an average of 2.29 m of streambed degradation on average while the upper stream area showed approximately 0.63 m of bed degradation over 24 years. In the simulation of the area downstream of Daecheong Dam based on the GSTARS3 model, similar bed degradation was observed. However, a great difference was detected between the result and the actual measurement. According to the cause analysis, the riverbed in the area downstream of Daecheong Dam has continuously degraded due to the dam construction and mass collection of gravel. The mass collection of gravel was the main cause of riverbed change. It was found that about 76% of all riverbed degradation was caused by the mass collection of gravel.

Identification of Expanding the Usability of the Water Resources in Hwacheon Dam System Due to the Flood Surcharging Effects of Peace Dam (평화의 댐 흥수지체 효과에 따른 화천댐 계통 이수 능력의 증대에 대한 검정)

  • Yu, Ju-Hwan;Park, Chang-Geun;Jo, Hyo-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.617-625
    • /
    • 2001
  • Peace dam constructed against the water attack had stopped in the first step, linked with Hwacheon dam through bypass tunnels and had an effect of flood surcharging in its pocket on Hwacheon dam downstream. To study the utility of Peace dam, the flood control effects of Peace dam and the restricted water level (RWL) in Hwacheon dam were reviewed and identified with operating Hwacheon dam system. Analysing the results the ideas of expanding the usability of the water resources in Hwacheon dam system were suggested. To do that, the criteria and the model of reservoir operation were established frist and the optimization of the operation have done. Based on the results the performance of the optimization was evaluated as an reference coefficient with relative value of the registered data to the optimized. And examining several alternatives for the RWL in Hwacheon reservoir operation made more feasible RWL suggested. And its economic benefit was also reckoned.

  • PDF

A study on determining threshold level of precipitation for drought management in the dam basin (댐 유역 가뭄 관리를 위한 강수량 임계수준 결정에 관한 연구)

  • Lee, Kyoung Do;Son, Kyung Hwan;Lee, Byong Ju
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.293-301
    • /
    • 2020
  • This study determined appropriate threshold level (cumulative period and percentage) of precipitation for drought management in dam basin. The 5 dam basins were selected, the daily dam storage level and daily precipitation data were collected. MAP (Mean Areal Precipitation was calculated by using Thiessen polygon method, and MAP were converted to accumulated values for 6 cumulative periods (30-, 60-, 90-, 180-, 270-, and 360-day). The correlation coefficient and ratio of variation coefficient between storage level and MAP for 6 cumulative periods were used to determine the appropriate cumulative period. Correlation of cumulative precipitation below 90-day was low, and that of 270-day was high. Correlation was high when the past precipitation during the flood period was included within the cumulative period. The ratio of variation coefficient was higher for the shorter cumulative period and lower for the longer in all dam, and that of 270-day precipitation was closed to 1.0 in every month. ROC (Receiver Operating Characteristics) analysis with TLWSA (Threshold Line of Water Supply Adjustment) was used to determine the percentage of precipitation shortages. It is showed that the percentage of 270-day cumulative precipitation on Boryung dam and other 4-dam were less than 90% and 80% as threshold level respectively, when the storage was below the attention level. The relationship between storage and percentage of dam outflow and precipitation were analyzed to evaluate the impact of artificial dam operations on drought analysis, and the magnitude of dam outflow caused uncertainty in the analysis between precipitation and storage data. It is concluded that threshold level should be considered for dam drought analysis using based on precipitation.

3D Resistivity Survey for Dam Safety Inspection (저수지 안전진단을 위한 3차원 전기비저항 탐사)

  • Cho, In-Ky;Yong, Hwan-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.99-106
    • /
    • 2019
  • Resistivity method has been used for the dam safety inspection and, for the convenience of fieldwork, two-dimensional (2D) resistivity data has been usually measured along the dam crest. However, since the dam has three-dimensional (3D) structure, 2D resistivity survey along the dam crest violates 2D assumption and 3D effects caused by 3D topography and material properties in the dam distort the inversion result of 2D resistivity data acquired along the dam crest. Furthermore, it is really hard to evaluate the 3D structure of the dam and 3D leakage pathway using 2D resistivity survey because 2D resistivity survey can provide only 2D resistivity section beneath the survey line. In this study, 3D resistivity survey was conducted at a dam in Korea. By comparing the results from 3D and 2D resistivity surveys, merit and demerits of 3D survey were investigated. Finally, it was confirmed that 3D survey can provide more accurate information about the dam status and 3D leakage pathway compared to the 2D survey. Therefore the 3D resistivity survey should be actively expanded for more accurate dam safety inspection even though more time and expense are required.

Longitudinal and Vertical Variations of Long-term Water Quality along with Annual Patterns in Daecheong Reservoir

  • Lee, Sang-Jae;Shin, Jae-Ki;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.199-211
    • /
    • 2010
  • The objectives for this study were to evaluate spatial and temporal characteristics of water quality, based on long-term water quality monitoring data during 1993~2008. We found that physico-chemical and ecological conditions in the Daecheong Reservoir (DR) were modified by the construction of upper dam (i.e., Yongdam Reservoir). total phosphorus (TP), Secchi depth (SD), and chlorophyll-a (CHL) in the DR showed significant longitudinal decreases along the headwater-to-the downlake, indicating a large spatial variation, and this gradient was more intensified during the high-flow season (monsoon). Nutrient-rich water containing high nitrogen and phosphorus in the monsoon season (July~August) passed through the reservoir as a density current in the metalimnetic depth, and also high suspended solids increased in the metalimnetic depth, especially during the monsoon. According to the deviation analysis of Trophic State Index (TSI), >50% of TSI (CHL)-TSI (SD) and TSI (CHL)-TSI (TP) values were negatives, so that inorganic suspended solids (non-votatile solids) influenced the underwater light regime against phytoplankton growth. Also, ratios of CHL:TP after the dam construction evidently increased, compared to the values before the upper dam constructions, indicating a greater yield of phytoplankton in the unit phosphorus. Overall data showed that ecological and functional changes in Daecheong Reservoir occurred after the construction of upper dam (Yongdam Reservoir).

Laterally-Averaged Two-Dimensional Hydrodynamic and Turbidity Modeling for the Downstream of Yongdam Dam (용담댐 하류하천의 횡방향 평균 2차원 수리·탁수모델링)

  • Kim, Yu Kyung;Chung, Se Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.710-718
    • /
    • 2011
  • An integrated water quality management of reservoir and river would be required when the quality of downstream river water is affected by the discharge of upstream dam. In particular, for the control of downstream turbidity during flood events, the integrated modeling of reservoir and river is effective approach. This work was aimed to develop a laterally-averaged two-dimensional hydrodynamic and water quality model (CE-QUAL-W2), by which water quality can be predicted in the downstream of Yongdam dam in conjunction with the reservoir model, and to validate the model under two different hydrological conditions; wet year (2005) and drought year (2010). The model results clearly showed that the simulated data regarding water elevation and suspended solid (SS) concentration are well corresponded with the measured data. In addition, the variation of SS concentration as a function of time was effectively simulated along the river stations with the developed model. Consequently, the developed model can be effectively applied for the integrated water quality management of Yongdam dam and downstream river.

Flood Runoff Analysis of Multi-purpose Dam Watersheds in the Han River Basin using a Grid-based Rainfall-Runoff Model (격자기반의 강우유출모형을 통한 한강수계 다목적댐의 홍수유출해석)

  • Park, In-Hyeok;Park, Jin-Hyeog;Hur, Young-Teck
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.587-596
    • /
    • 2011
  • The interest in hydrological modeling has increased significantly recently due to the necessity of watershed management, specifically in regards to lumped models, which are being prosperously utilized because of their relatively uncomplicated algorithms which require less simulation time. However, lumped models require empirical coefficients for hydrological analyses, which do not take into consideration the heterogeneity of site-specific characteristics. To overcome such obstacles, a distributed model was offered as an alternative and the number of researches related to watershed management and distributed models has been steadily increasing in the recent years. Thus, in this study, the feasibility of a grid-based rainfall-runoff model was reviewed using the flood runoff process in the Han River basin, including the ChungjuDam, HoengseongDam and SoyangDam watersheds. Hydrological parameters based on GIS/RS were extracted from basic GIS data such as DEM, land cover, soil map and rainfall depth. The accuracy of the runoff analysis for the model application was evaluated using EFF, NRMSE and QER. The calculation results showed that there was a good agreement with the observed data. Besides the ungauged spatial characteristics in the SoyangDam watershed, EFF showed a good result of 0.859.

A Study on S-wave Reflection method for the assessment of physical property of dam body (댐체 물성 평가를 위한 S파 반사법에 관한 연구)

  • Kim, Hyoung-Soo;Kim, Jung-Yul;Ha, Ik-Soo;Kim, Yoo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.392-399
    • /
    • 2005
  • Shear modulus (or rigidity) of dam material is an important parameter which can be directly associated with the deformation of dam. Seepage or leakage of water can cause the defects or cracks of dam body. The existence of cracks and rigidity of dam body are decisive information for the estimation of dam safety. Rigidity of material is mainly determined from S-wave velocity and the defects of dam body can be detected by seismic reflection survey. Therefore, seismic reflection survey will be a desirable method which can give a solution about dam safety problem. Among various physical properties of dam body, S-wave velocity is the most important information but it is not easy to get the information. In this study, diverse measuring techniques of S-wave reflection survey were attempted to get the information about S-wave velocity of dam body. Ultimately, S-wave velocity could be estimated by the analysis of SH reflection events which can be easily observed in shot gather data obtained from SH measuring technique. Meanwhile, P-wave reflection survey was also performed at the same profile. P-beam radiation technique which can reduce the surface waves and reinforce the P-wave reflection events was applied for giving a help to analyse P-wave velocity. In the end, P-and S-wave velocity, Vs/Vp, Poisson's ratio distribution of the vertical section under the profile could be acquired.

  • PDF

A Study on Public Awareness of Landslide and Check Dam Using the Big Data Platform 'Hyean' (공공 빅데이터 플랫폼 '혜안'을 통한 산사태 및 사방댐 인식 분석)

  • Sohee Park;Min Jeng Kang;Song Eu
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.687-698
    • /
    • 2022
  • Purpose: This study was conducted to understand the public awareness of landslide and check dams in 2015-2020 using the big data platform 'Hyean' and to confirm the utilization of this platform in disaster prevention areas. Method: The total amount, number of detection by period by media, and affirmative and negative trends of a search for 'landslide' and 'check dam' in 2015-2020 were analyzed using a keyword search of 'Hyean.' Result: There is significant lack of public awareness of check dam compared to landslide, and the trend is more noticeable in the conspicuous gap of data amount between the news and SNS media. The number and the timing of the search for 'landslide' coincided with the actual occurrence of landslide, while the detection of 'check dam' was less related to it. Relatively affirmative preception for the check dam is inferred, but it was difficult to confirm accurate statistical affirmative and negative trends in the disaster prevention field using 'Hyean.' Conclusion: Unlike the experts who expect positive public awareness of check dam, the statistic results show that the public awareness of the check dam as an effective countermeasure against landslide was extremely low. Active promotion of erosion control projects should be carried out first, and a balanced sample survey should accompany online and periodic field surveys. Since there is a limit to grasping the effective perception in the field of disaster prevention area using 'Hyean', it should be very cautious to establish local/governmental policies using it.